ENVISIONING THE MID-VALLEY TRANSPORTATION CORRIDOR PLAN

PREPARED FOR
CITY OF BALDWIN PARK
CITY OF COVINA
CITY OF EL MONTE
CITY OF WEST COVINA

JUNE 30, 2013
ENVISIONING THE MID-VALLEY TRANSPORTATION CORRIDOR PLAN

This is a project for the San Gabriel Valley Council of Governments with funding provided by the Southern California Association of Governments’ (SCAG) Compass Blueprint Program. Compass Blueprint assists Southern California cities and other organizations in evaluating planning options and stimulating development consistent with the region’s goals. Compass Blueprint tools support visioning efforts, infill analyses, economic and policy analyses, and marketing and communication programs.

The preparation of this report has been financed in part through grant(s) from the Federal Highway Administration (FHWA) and Federal Transit Administration (FTA) through the U.S. Department of Transportation (DOT) in accordance with the provisions under the Metropolitan Planning Program as set forth in Section 104(f) of Title 23 of the U.S. Code.

The contents of this report reflect the views of the author who is responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of SCAG, DOT or the State of California. This report does not constitute a standard, specification or regulation. SCAG shall not be responsible for the City’s future use or adaptation of the report.
TABLE OF CONTENTS

1 | **Introduction** ... 1
 - Project Purpose ... 1
 - Study Area .. 2
 - Report Structure .. 3

2 | **Corridor Existing Conditions** ... 5
 - History of Transit in the Mid-Valley Corridor 5
 - Existing Demographic, Housing, and Socio-Economic conditions 7
 - Existing Land Use .. 13
 - Existing Urban Form .. 15
 - Existing Transportation .. 15
 - Employment .. 21
 - Sales Tax ... 21
 - Housing Prices ... 21
 - Health and Wellness ... 22

3 | **Transit-Oriented Development** .. 25
 - What is TOD? ... 25
 - TOD Development Feasibility ... 28
 - Key Land Use and Transportation Issues and Barriers to Increased Transit Use and TOD ... 32

4 | **Vision and TOD Guiding Principles** 35

5 | **Corridor Recommendations** .. 41
 - Transportation ... 41
 - Land Use and Urban Design ... 50

6 | **Site Design Strategies** ... 55
 - Site Layout, Building Location, & Walkable Streets 56
 - Access, Parking, and SERvice .. 57
Building Massing and Volume ... 58
Building Frontage ... 59
Open Space .. 60
Land Use .. 61

7 | Focus Area Plans .. 63
Peck Road and Ramona Boulevard .. 64
Baldwin Park .. 70
Covina .. 77
Badillo Street from Vincent Avenue to Azusa Avenue 84

8 | Code Framework .. 91
What Are Place Types? ... 91
Building Types .. 106
Building Frontage Types .. 110
Frontage Repair Strategies .. 112

9 | Next Steps ... 117
Corridor-Level Implementation ... 117
Funding Sources ... 120
LIST OF FIGURES

Figure 1: Regional Context Map .. 2
Figure 2: Pacific Electric Railway Map ... 6
Figure 3: Population Density .. 8
Figure 4: Non-White and Hispanic Population 9
Figure 5: Zero Vehicle Households ... 10
Figure 6: Population with Income Less than 200% of the Federal Poverty Level ... 12
Figure 7: Existing Land Uses ... 14
Figure 8: Percentage of Residents Taking Public Transit to Work 16
Figure 9: Transit Routes around the Ramona-Badillo Corridor 18
Figure 10: Existing Traffic Volumes around the Ramona-Badillo Corridor ... 19
Figure 11: Motor Vehicle Collisions with Pedestrians and Bicyclists 24
Figure 12: Existing Conditions for the Peck Road and Ramona Boulevard Focus Area ... 64
Figure 13: Block Structure and Opportunity Areas Diagram for the Peck Road and Ramona Boulevard Focus Area 67
Figure 14: Place Type Diagram for the Peck Road and Ramona Boulevard Focus Area ... 67
Figure 15: Existing Conditions for the Baldwin Park Focus Area 70
Figure 16: Urban Land Institute Baldwin Park Civic Center Study 72
Figure 17: Block Structure and Opportunity Areas for the Baldwin Park Focus Area ... 73
Figure 18: Place Type Diagram for the Baldwin Park Focus Area 74
Figure 19: Existing Conditions for the Covina Focus Area 77
Figure 20: Covina Town Center Specific Plan 79
Figure 21: Block Structure and Opportunity Areas Diagram for the Covina Focus Area ... 81
Figure 22: Place Type Diagram for the Covina Focus Area 81
Figure 23: Existing Conditions for the Badillo Street Focus Area 84
Figure 24: Block Structure and Opportunity Areas Diagram for the Badillo Street Focus Area ... 87
Figure 25: Place Type Diagrams for the Badillo Street Focus Area 88
LIST OF TABLES

Table 1: Population by Age Category around the Ramona-Badillo Corridor 7
Table 2: Median Household and Per Capita Income around the Ramona-Badillo Corridor ... 11
Table 3: Existing Land Uses within One-Half Mile of the Ramona-Badillo Corridor ... 13
Table 4: Ramona-Badillo Corridor Implementation Table 118
INTRODUCTION

PROJECT PURPOSE

The “Envisioning the Mid-Valley Transportation Corridor Plan” provides a vision, recommendations, illustrative concepts, and actions for transforming the Ramona Boulevard-Badillo Street Corridor (Ramona-Badillo Corridor) from an auto-oriented suburban area into a truly walkable, urban, transit-oriented place. The study was funded by the Southern California Association of Governments as part of the agency’s Compass Blueprint project. The impetus behind the Envisioning the Mid-Valley Transportation Corridor Plan is an effort to provide high-quality bus rapid transit (BRT) service along the Ramona-Badillo Corridor, serving the Cities of El Monte, Baldwin Park, West Covina, and Covina. To assist with the planning effort, the four cities and SCAG selected Raimi + Associates and its consultant team of Sargent Town Planning, Fehr + Peers, and Metropolitan Research + Economics.

The Envisioning the Mid-Valley Transportation Corridor Plan identifies a range of improvements to the corridor – such as land use changes, streetscape upgrades, and transit connections – that will promote transit use and encourage transit-supportive development. The main purposes of the project are to:

- Describe the vision and guiding principles for land use, urban design, and transportation improvements along the corridor and within each focus area;
- Develop a set of transit-oriented development (TOD) types appropriate for the corridor;
- Create a series of illustrative, TOD concept framework plans for each focus area along the corridor;
- List priority recommendations for the corridor and each focus area; and
- Identify potential funding sources.

The Envisioning the Mid-Valley Transportation Corridor Plan builds on the 2010 Mid-Valley Bus Rapid Transit Preliminary Feasibility Study. Bus rapid transit (BRT) is an innovative, flexible, and high performance transit mode that uses buses or specialized vehicles on roadways or dedicated lanes to quickly and efficiently transport passengers to their destination. BRT systems can equal or exceed the performance of most rail systems but at a fraction of the price due to reduced construction, infrastructure, and maintenance costs. Common features of a bus rapid transit system that are different from most conventional bus systems include:

- High-capacity vehicles
- Exclusive bus lanes separated from other roadways
- Rail-like station amenities with level boarding platforms
- Rail-like spacing between stations for fewer stops and express travel times
- More frequent service
- Traffic signal priority
- Real-time vehicle location and schedule information
- Off-vehicle fare collection

The Mid-Valley Bus Rapid Transit Preliminary Feasibility Study identified the Ramona Boulevard and Badillo Street alignment as the most desirable route because it would connect the El Monte Station to the San Dimas Park and Ride, provide a direct link to downtown Los Angeles and other major employment centers, and improve transit ridership in the Central San Gabriel Valley. The study also found that BRT speeds could match or exceed existing commuter bus lines on Interstate 10.

Incorporating the findings of the Mid-Valley Bus Rapid Transit Preliminary Feasibility Study, the Envisioning the Mid-Valley Transportation Corridor Plan explores the land use, transportation, and urban design changes that could be implemented to increase the feasibility of future BRT along the Ramona-Badillo Corridor. The Plan identifies strategies for multi-modal transportation and opportunities for transit-oriented development (TOD). Transit-oriented development includes a mixture of land uses integrated into a walkable neighborhood and located adjacent to quality public transportation. TOD is considered an important tool to increase transit ridership and support high-quality transit in the corridor.

STUDY AREA

The Mid-Valley Corridor traverses El Monte, Baldwin Park, West Covina, Covina, and unincorporated Los Angeles County in the San Gabriel Valley, running twelve miles along Ramona Boulevard and Badillo Street (Figure 1). The Mid-Valley Corridor originates at the recently renovated El Monte Station and terminates in Covina. The largest segment of the corridor is in Covina, but it has four segments in unincorporated Los Angeles County.

FIGURE 1: REGIONAL CONTEXT MAP
The study area includes all parcels fronting Ramona Boulevard and Badillo Street, but also parcels with one half-mile of the corridor, the approximate distance a pedestrian will walk to reach local-serving retail, services, and bus stops. Currently, over 115,000 people live in 31,000 housing units within one-half mile of the corridor. There are multiple destinations of note near the corridor, including the El Monte Station, downtown El Monte, downtown Baldwin Park, Citrus Avenue in Covina, and three colleges (Cal State Polytechnic at Pomona, Mount San Antonio College, and DeVry University).

REPORT STRUCTURE

The Envisioning the Mid-Valley Transportation Corridor Plan includes the following chapters:

- **Chapter 1: Introduction** provides an overview of the purpose of the project and report, describes transit-oriented development, and defines the study area.

- **Chapter 2: Corridor Existing Conditions** presents the history of transit along the Ramona-Badillo Corridor and the existing demographic, land use, urban design, transportation, and economic conditions of the corridor today.

- **Chapter 3: Transit-Oriented Development** describes the characteristics of TOD. It also outlines the development feasibility of and key land use/transportation barriers to TOD along the Ramona-Badillo Corridor.

- **Chapter 4: Vision and Guiding Principles** provides a short narrative of the vision for the corridor and nine principles that shall guide the development of the plan.

- **Chapter 5: Corridor-Level Conclusions and Recommendations.** This chapter provides an overview of the conclusions of the study and specific recommendations for future corridor-wide improvements.

- **Chapter 6: Design Recommendations** presents a framework to guide future development in the corridor and focus area. It describes development strategies, development types that support transit, and infill site types.

- **Chapter 7: Focus Area Plans** applies the vision and guiding principles, development strategies, and TOD typologies to four focus areas along the corridor. It also lists implementation strategies for each area.

- **Chapter 8: Code Framework** provides a form-based code framework to guide land use and building form decision-making along the Ramona-Badillo Corridor.

- **Chapter 9: Next Steps** includes a matrix of corridor-level implementation strategies and potential funding sources.

At the end of the report are a series of appendices that provide additional information on the project. The appendices are:

- **Appendix A: Corridor-Level Existing Conditions Report**

- **Appendix B: Pro-Forma Analysis**
This page is intentionally left blank.
This chapter describes the history of transit on the Ramona-Badillo Corridor and the existing demographic, land use, urban design, transportation, and economic conditions in the corridor. The purpose of this analysis is to inform a vision for the corridor that encourages and enables walkable, pedestrian-oriented, and transit-serving centers. The existing conditions analysis was used to understand key issues and opportunities, develop replicable infill building and street types, inform focus area concept plans, and create a development framework for the corridor. This summary chapter is based on a comprehensive existing conditions analysis conducted as part of this project, which is included as Appendix A: Corridor Existing Conditions. The existing conditions summary includes data from a variety of sources, including each of the cities along the corridor, the Southern California Association of Governments (SCAG), Los Angeles County Metropolitan Transportation Authority (Metro), and Foothill Transit.

HISTORY OF TRANSIT IN THE MID-VALLEY CORRIDOR

During the first half of the 20th Century, Pacific Electric, often called “the Red Cars,” was among the most extensive interurban trolley systems in the country. The Pacific Electric system had over 1,000 miles of track in Southern California alone and was the primary means of intercity travel at that time.

Originating in Downtown Los Angeles, the San Bernardino Line of the Pacific Electric system extended out to Redlands through El Monte, Baldwin Park, West Covina, and Covina (Figure 2). The dual-track Pacific Electric line ran on a private drive parallel to Ramona Boulevard from the El Monte Station to the San Gabriel River, where the line turned into a single track across the river. In Baldwin Park, the line returned to dual tracks on the eastern side of the river, running on a private drive paralleling Ramona Boulevard to Badillo Street in downtown Baldwin Park. The double tracks continued along Badillo Street until Grand Avenue in Covina, at which point the line again became a single track.
Within the Mid-Valley Corridor study area, the San Bernardino Line had stops at Tyler Avenue, Hayes Avenue, Cogswell Avenue, Maxson Avenue, the San Gabriel River, Alburnes gravel pit, La Rica Avenue, Baldwin Park, Vineland Avenue, Orange Avenue, Irwindale Avenue, Vincent Avenue, Lark Ellen Avenue, Azusa Avenue, Hollenbeck Avenue, Citrus Avenue, Barranca Avenue, and Heylear (Grand Avenue).

The remnants of the old San Bernardino Line are still visible today. The Pacific Electric San Bernardino Line can also be seen in the development patterns around the corridor. In El Monte, a narrow strip of residential and commercial development exists along the north side of Ramona Boulevard from Peck Road to the San Gabriel River. Multifamily residential development has replaced the private drive that previously accommodated the San Bernardino Line. A similar, narrow strip of development is visible in Baldwin Park, running from approximately Harlan Avenue to Baldwin Park Avenue. Beyond Baldwin Park Avenue, a frontage road and parking replaced the trolley tracks. Along Badillo Street, a landscaped median and city streets now occupy the former Pacific Electric Line.
EXISTING DEMOGRAPHIC, HOUSING, AND SOCIO-ECONOMIC CONDITIONS

According to the 2010 U.S. Census, there were over 115,000 people and nearly 31,000 occupied housing units within one-half mile of the Ramona-Badillo Corridor. Twenty-eight percent of El Monte’s population, 56% of Baldwin Park’s population, and 55% of Covina’s population live within one-half mile of the corridor. In general, higher densities support better transit service, and the densest areas are concentrated in the western portion of the corridor (Figure 3). Portions of El Monte and Baldwin Park have residential densities upwards of 20,000 persons per square mile. Average household size in El Monte and Baldwin Park within one-half mile of the corridor exceeds four persons per unit, far above the County-wide average of three persons per unit.

The corridor is very diverse with a large proportion of the census blocks within one-half mile of the corridor having non-White and Hispanic populations exceeding 50% (Figure 4). Fifty-three percent of the people living with one-half mile of the corridor identify themselves as non-White or Hispanic. In El Monte and Baldwin Park, the percentage of people living within one-half mile of the corridor that are non-White or Hispanic is 63% and 57%, respectively.

There is a significant, transit-dependent population living around the Ramona-Badillo Corridor. These include seniors, youth, renters, zero vehicle households, and low-income residents.

- Concentrations of renter-occupied housing units are found all across the corridor, and overall, renters occupy 46% of total units. Sixty-five percent of Baldwin Park’s renter-occupied units and 30% of El Monte’s renter-occupied housing units are located along the corridor.
- There are concentrations of zero-vehicle households across the corridor with significant concentrations in El Monte, Baldwin Park, and south of the corridor in Covina (Figure 5).
- The corridor has an over-representation of people under age 20 compared to Los Angeles County as a whole.¹

Table 1: Population by Age Category around the Ramona-Badillo Corridor

<table>
<thead>
<tr>
<th>Age Category</th>
<th>Population Living within 1/2 mile of Corridor</th>
<th>Corridor Index: Compared to County</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 4</td>
<td>7,860</td>
<td>107%</td>
</tr>
<tr>
<td>5 - 9</td>
<td>7,936</td>
<td>110%</td>
</tr>
<tr>
<td>10 - 14</td>
<td>8,829</td>
<td>114%</td>
</tr>
<tr>
<td>15 - 19</td>
<td>9,375</td>
<td>109%</td>
</tr>
<tr>
<td>20 - 24</td>
<td>8,484</td>
<td>99%</td>
</tr>
<tr>
<td>25 - 34</td>
<td>15,771</td>
<td>94%</td>
</tr>
<tr>
<td>35 - 44</td>
<td>15,448</td>
<td>95%</td>
</tr>
<tr>
<td>45 - 54</td>
<td>14,953</td>
<td>96%</td>
</tr>
<tr>
<td>55 - 64</td>
<td>11,200</td>
<td>97%</td>
</tr>
<tr>
<td>65 - 74</td>
<td>6,174</td>
<td>95%</td>
</tr>
<tr>
<td>75 - 84</td>
<td>4,031</td>
<td>103%</td>
</tr>
</tbody>
</table>

¹ The Corridor Index column shows the proportional representation of age categories along the Ramona-Badillo Corridor compared to the County as a whole. Results above 100% indicate an over-representation, compared to an average distribution for the County.
Figure 3
Population Density (persons per square mile)

Legend
2010 Population Density (persons per square mile)
- Population Less Than 500 per SM
- Less than 500
- 500 to 5,000
- 5,000 to 10,000
- 10,000 to 20,000
- 20,000 to 30,000
- 30,000 to 50,000
- Greater than 50,000

Transportation Systems
- Metrolink Stations
- Metro Rapid 770 Stops
- Metro Silver Line Stations
- Proposed Mid-Valley Route
- Metro Rapid (770)
- Metro Silver Line (910)
- Metrolink Rail Lines

Jurisdictional Boundaries
- City Boundaries
- Urbanized Area Boundaries

Envisioning the Mid-Valley Transportation Corridor Plan
This is a project for the San Gabriel Valley Council of Governments with funding provided by the Southern California Association of Governments (SCAG) Compass Blueprint Program. The map was produced by Raimi + Associates.

October 2012

Tracts include areas with a population density greater than 300 persons per square mile (SM).

Data sources: U.S. Census, City of Los Angeles, Los Angeles County, ESRI.
Figure 4
Percent Non-White Population

Legend

2010 Percent Non-White Population
- Population Less Than 500 SM
- Less than 25%
- 25% to 50%
- 50% to 75%
- Greater than 75%

Transportation Systems
- Metrolink Stations
- Metro Rapid 770 Stops
- Metro Silver Line Stations
- Proposed Mid-Valley Route
- Metro Rapid (770)
- Metro Silver Line (910)
- Metrolink Rail Lines

Jurisdictional Boundaries
- City Boundaries

Envisioning the Mid-Valley Transportation Corridor Plan
This is a project for the San Gabriel Valley Council of Governments with funding provided by the Southern California Association of Governments (SCAG) Compass Blueprint Program. The map was produced by Raimi + Associates.
October 2012

Tracts include areas with a population density greater than 500 persons per square mile (SM).
Data sources: U.S. Census, City of Los Angeles, Los Angeles County, ESRI.
Figure 5
Percent of Zero Vehicle Households

Legend
2010 Percent of Zero Vehicle Households
- Population Less Than 500 SM
- Less Than 3%
- 3% to 5%
- 5% to 10%
- Greater Than 10%

Transportation Systems
- Metrolink Stations
- Metro Rapid 770 Stops
- Metro Silver Line Stations
- Proposed Mid-Valley Route
- Metro Rapid (770)
- Metro Silver Line (910)
- Metrolink Rail Lines

Jurisdictional Boundaries
- City Boundaries

Envisioning the Mid-Valley Transportation Corridor Plan
This is a project for the San Gabriel Valley Council of Governments with funding provided by the Southern California Association of Governments (SCAG) Compass Blueprint Program. This map was produced by Raimi + Associates.

October 2012

Trends include areas with a population density greater than 500 persons per square mile (SM).

Data sources: U.S. Census, City of Los Angeles, Los Angeles County, ESRI.
Unemployment is a major challenge in the Ramona-Badillo Corridor. Unemployment rates exceed 5% along virtually the entire corridor, with unemployment rates above 10% along a significant proportion of the corridor. The area in and around Downtown El Monte has the highest unemployment rates at greater than 15%.

Median household income and per capita income are lower than the County averages (Table 2). Median household income along the corridor is $48,121, compared to $51,080 for Los Angeles County. Many Census tracts along the corridor fall below that average, particularly in El Monte and Baldwin Park. Income levels are highest in Covina and West Covina. Per capita income for the County is $24,642, whereas per capita income within one-half mile of the corridor is $17,622, approximately 28% lower than the County average. Per capita income within one-half mile of the corridor is significantly lower than average for El Monte and Baldwin Park, with per capita incomes of $13,027 and $14,184 respectively.

TABLE 2: MEDIAN HOUSEHOLD AND PER CAPITA INCOME AROUND THE RAMONA-BADILLO CORRIDOR

<table>
<thead>
<tr>
<th>Jurisdiction</th>
<th>Median Household Income within 1/2 mile of Corridor</th>
<th>Per Capita Income within 1/2 mile of Corridor</th>
</tr>
</thead>
<tbody>
<tr>
<td>El Monte</td>
<td>$37,119</td>
<td>$13,027</td>
</tr>
<tr>
<td>Baldwin Park</td>
<td>$44,376</td>
<td>$14,184</td>
</tr>
<tr>
<td>Covina</td>
<td>$54,674</td>
<td>$22,001</td>
</tr>
<tr>
<td>West Covina</td>
<td>$62,348</td>
<td>$22,530</td>
</tr>
<tr>
<td>Corridor Total</td>
<td>$48,121</td>
<td>$17,622</td>
</tr>
<tr>
<td>Los Angeles County</td>
<td>$51,080</td>
<td>$24,642</td>
</tr>
</tbody>
</table>

Consequently, a relatively large lower-income population lives within one-half mile of the corridor. There is a relatively large proportion of the people living within one-half mile of the corridor who have household incomes less than 200% of the Federal Poverty Level ($23,050 for a family of four x 200% = $46,100). A greater percentage of this population lives along the western portion of the corridor (in El Monte and Baldwin Park) with relatively few in Covina and West Covina. Figure 6 shows the percentage of population under 200% of the Federal Poverty Level by census tract.
Figure 6
Percent of Population With Income Less Than 200 Percent Poverty Level

Legend
Percent of Population Under the 200 Percent Poverty Level (2010)
- Population Less Than 500 SM
- Less than 25%
- 25% to 50%
- 50% to 75%
- Greater than 75%

Transportation Systems
- Metrolink Stations
- Metro Rapid 770 Stops
- Metro Silver Line Stations
- Proposed Mid-Valley Route
- Metro Rapid (770)
- Metro Silver Line (910)
- Metrolink Rail Lines

Envisioning the Mid-Valley Transportation Corridor Plan
This is a project for the San Gabriel Valley Council of Governments with funding provided by the Southern California Association of Governments (SCAG) Compass Blueprint Program. This map was produced by Raimi + Associates.

October 2012

Trends include areas with a population density greater than 500 persons per square mile (SM).

Data sources: U.S. Census, City of Los Angeles, Los Angeles County, ESRI.
EXISTING LAND USE

Table 3 and Figure 7 show the total acreage and percentage of land use type within one-half mile of the Ramona-Badillo Corridor. The primary land use within one-half mile of the corridor is residential land use. Single family residential land occupies the majority of the land area, ranging from 46% of the land area in El Monte to 63% of the land area in West Covina. Multifamily residential land accounts for only 5% to 8% of the land area within each city.

There are also relatively large areas of commercial services (Covina and El Monte), education (Baldwin Park, Covina, and West Covina), and industrial land (Covina and El Monte). Parcels fronting the corridor are a mixture of residential and commercial uses. Concentrations of commercial uses are located: in El Monte between Peck Road and the Transit Center, in and around downtown Baldwin Park, in Covina and West Covina between North Vincent Avenue and Azusa, and in and around downtown Covina.

TABLE 3: EXISTING LAND USES WITHIN ONE-HALF MILE OF THE RAMONA-BADILLO CORRIDOR

<table>
<thead>
<tr>
<th>Land Use Designation</th>
<th>Baldwin Park</th>
<th>Percent</th>
<th>Covina</th>
<th>Percent</th>
<th>El Monte</th>
<th>Percent</th>
<th>West Covina</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Acres</td>
<td></td>
<td>Acres</td>
<td></td>
<td>Acres</td>
<td></td>
<td>Acres</td>
<td></td>
</tr>
<tr>
<td>Agriculture</td>
<td>37</td>
<td>3%</td>
<td>0%</td>
<td>0%</td>
<td>194</td>
<td>13%</td>
<td>43</td>
<td>7%</td>
</tr>
<tr>
<td>Commercial and Services</td>
<td>90</td>
<td>6%</td>
<td>180</td>
<td>10%</td>
<td>22</td>
<td>1%</td>
<td>13</td>
<td>2%</td>
</tr>
<tr>
<td>Education</td>
<td>145</td>
<td>10%</td>
<td>209</td>
<td>11%</td>
<td>65</td>
<td>4%</td>
<td>57</td>
<td>9%</td>
</tr>
<tr>
<td>General Office</td>
<td>17</td>
<td>1%</td>
<td>72</td>
<td>4%</td>
<td>22</td>
<td>1%</td>
<td>13</td>
<td>2%</td>
</tr>
<tr>
<td>Industrial</td>
<td>56</td>
<td>4%</td>
<td>143</td>
<td>8%</td>
<td>105</td>
<td>7%</td>
<td>31</td>
<td>5%</td>
</tr>
<tr>
<td>Mixed Commercial</td>
<td>2</td>
<td>0%</td>
<td>6</td>
<td>0%</td>
<td>0</td>
<td>0%</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Mixed Urban</td>
<td>0</td>
<td>0%</td>
<td>10</td>
<td>1%</td>
<td>2</td>
<td>0%</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Multifamily</td>
<td>86</td>
<td>6%</td>
<td>151</td>
<td>8%</td>
<td>121</td>
<td>8%</td>
<td>34</td>
<td>5%</td>
</tr>
<tr>
<td>Open Space and Recreation</td>
<td>16</td>
<td>1%</td>
<td>49</td>
<td>3%</td>
<td>32</td>
<td>2%</td>
<td>10</td>
<td>2%</td>
</tr>
<tr>
<td>Other Residential</td>
<td>23</td>
<td>2%</td>
<td>22</td>
<td>1%</td>
<td>26</td>
<td>2%</td>
<td>11</td>
<td>2%</td>
</tr>
<tr>
<td>Public Facilities</td>
<td>34</td>
<td>2%</td>
<td>74</td>
<td>4%</td>
<td>56</td>
<td>4%</td>
<td>37</td>
<td>6%</td>
</tr>
<tr>
<td>Single Family</td>
<td>830</td>
<td>58%</td>
<td>917</td>
<td>48%</td>
<td>693</td>
<td>45%</td>
<td>401</td>
<td>63%</td>
</tr>
<tr>
<td>Transportation, Communication, and Utilities</td>
<td>87</td>
<td>6%</td>
<td>28</td>
<td>1%</td>
<td>63</td>
<td>4%</td>
<td>1</td>
<td>0%</td>
</tr>
<tr>
<td>Under Construction</td>
<td>0</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>1</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Unknown/Unclassified</td>
<td>0</td>
<td>0%</td>
<td>1</td>
<td>0%</td>
<td>154</td>
<td>10%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Vacant</td>
<td>2</td>
<td>0%</td>
<td>31</td>
<td>2%</td>
<td>0</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Total</td>
<td>1,427</td>
<td></td>
<td>1,893</td>
<td></td>
<td>1,539</td>
<td></td>
<td>636</td>
<td></td>
</tr>
</tbody>
</table>
Envisioning the Mid-Valley Transportation Corridor Plan

This is a project for the San Gabriel Valley Council of Governments with funding provided by the Southern California Association of Governments (SCAG) Compass Blueprint Program. The map was produced by Raimi + Associates.

October 2012

Existing Land Use (2008)

Data sources: SCAG 2008 Land Use, U.S. Census, Los Angeles County, Metro, and ESRI.
EXISTING URBAN FORM

Compact, walkable communities enable residents to walk to jobs, shopping, schools, and other services, and block size is a crucial factor in fostering walkability. For pedestrian-scaled block lengths, the Institute of Transportation Engineers recommends maximum block lengths of 400 to 600 feet in suburban or general urban areas (blocks that are 3.7 to 8.3 acres in size). The areas around Downtown El Monte, Baldwin Park, and Covina tend to have the smallest block sizes, with average block lengths of 400 to 600 feet or less. Areas between the Downtowns, Interstate 605 to Baldwin Park, and the area around Azusa Ave (Highway 39) have larger, less walkable blocks, often longer than 800 feet.

A key to creating a healthy and economically successful corridor will be to reinforce and expand areas which are currently pedestrian-oriented. Significant portions of the corridor are dominated by sound walls, backs of buildings, parking lots, and vacant lots, all of which provide a disincentive for walking, bicycling, and transit use. These areas are concentrated between downtown Baldwin Park and Interstate 605, and east of Covina. Areas with pedestrian-oriented frontages can be found in isolated pockets along the entire corridor, with concentrations in Downtown El Monte, Baldwin Park, and Covina and between downtown Baldwin Park and Covina. Frontages are often inconsistent on both sides of the corridor (i.e., one side is pedestrian-oriented and the other side is parking and vacant lots), creating a lack of uniformity along the majority of the corridor.

EXISTING TRANSPORTATION

Current transportation patterns and facilities along the corridor will play an important role in determining whether improved transit can be supported and accommodated in the long-term vision for the Ramona-Badillo Corridor. Residents along the corridor tend to use transit at a level higher than the County-wide average (7%). This is particularly true around Baldwin Park and El Monte. These areas of higher transit usage generally relate to areas with lower incomes. Conversely, higher income areas typically have lower levels of transit usage. Figure 8 shows the percentage of residents taking public transit to work by census tract.

Similarly, residents along the Ramona-Badillo Corridor tend to walk and bike to work at a level higher than the County-wide average. The areas east of downtown Baldwin Park and south of the corridor in Covina have higher proportions of the population that bicycle to work than the County average (3%). Areas of higher bicycle usage are also generally correlated with areas of lower incomes.

There are numerous locations where the percentage of people walking to work is higher than the County average of 1%. Again, these locations are correlated with areas of lower income but less so than the transit and bicycling areas. Several of these locations are located directly on Ramona Boulevard or Badillo Street.
Figure 8
Percent of Population Taking Public Transportation to Work

Legend
Percent of Residents Taking Public Transportation to Work (2010)
- Population Less Than 500 SM
- Less Than 5%
- 5% to 10%
- Greater Than 10%

Transportation Systems
- Metrolink Stations
- Metro Rapid 770 Stops
- Metro Silver Line Stations
- Proposed Mid-Valley Route
- Metro Rapid (770)
- Metro Silver Line (910)
- Metrolink Rail Lines

Envisioning the Mid-Valley Transportation Corridor Plan
This is a project for the San Gabriel Valley Council of Governments with funding provided by the Southern California Association of Governments (SCAG) Compass Blueprint Program. The map was produced by Reifs + Associates.

October 2012

Jurisdictional Boundaries
City Boundaries

Tracts include areas with a population density greater than 500 persons per square mile (SM).
Data sources: U.S. Census, City of Los Angeles, Los Angeles County, ESRI.
TRANSIT

Although no single transit route traverses the entire Ramona-Badillo Corridor, the corridor connects many of the important destinations in the region, particularly the downtowns of El Monte, Baldwin Park, and Covina and the El Monte Station. Metro Route 190 runs along a majority of the corridor, extending from the El Monte Station to Asuza Avenue in Covina. Metrolink also operates parallel to the Ramona-Badillo Corridor. The San Bernardino Metrolink Line runs on a standard rail right-of-way, carrying long distance passengers and cargo traffic. Metrolink operates during peak commute times, and the primary purpose of passenger trips on Metrolink is commuting.

Like the Pacific Electric system of the early 20th Century, the Ramona-Badillo Corridor has the potential to connect the San Gabriel Valley to the greater Los Angeles region. The El Monte Station currently hosts dozens of transit routes, which connect the San Gabriel Valley to downtown Los Angeles and the rest of the regional bus and rail system via the El Monte Busway. In fact, the El Monte Station is the largest bus terminal west of Chicago, and it has the capacity to accommodate 40,000 bus riders per day.

There are seven different transit service providers in the corridor, including Metro and Foothill Transit. The cities of El Monte, Baldwin Park, and West Covina also operate their own separate transit systems. Most transit service and ridership is concentrated around the El Monte Station. Figure 9 shows the transit routes around the Ramona-Badillo Corridor.

AUTOMOBILE CIRCULATION

The Ramona-Badillo Corridor has modest levels of traffic and congestion as compared to other areas of the County. Traffic volumes along the length of the corridor range from approximately 10,000 to 30,000 vehicles per day, suggesting that the Ramona-Badillo corridor does not experience the constant gridlock and delay that is endemic to major arterials in other areas of the County. Traffic volumes are highest around major intersections and interchanges (I-605 and I-10).
Figure 9: Transit Routes around the Ramona-Badillo Corridor

Envisioning the Mid-Valley Transportation Corridor Plan

This is a project for the San Gabriel Valley Council of Governments with funding provided by the Southern California Association of Governments (SCAG) Compass Blueprint Program.

This map was produced by Raimi + Associates and Fehr & Peers.

October 2012

Data sources: U.S. Census, City of Los Angeles, Los Angeles County, ESRI.
Figure 10: Traffic Volumes around the Ramona-Badillo Corridor

Legend

Transportation Systems
- MetroLink Stations
- MetroLink Rail Lines
- Metro Rapid 770 Stops
- Metro Silver Line Stations
- Metro Rapid (770)
- Metro Silver Line (910)

Jurisdictional Boundaries
- City Boundaries
- Study Corridor and Proposed BRT Route

Envisioning the Mid-Valley Transportation Corridor Plan

This is a project for the San Gabriel Valley Council of Governments with funding provided by the Southern California Association of Governments (SCAG) Compass Blueprint Program. This map was produced by Raimi + Associates.

October 2012
BICYCLE CIRCULATION
There is an extensive network of bicycle facilities on and around the Ramona-Badillo Corridor. The corridor itself has on-street bicycle lanes (Class II facilities) on Ramona Boulevard between Dufree Avenue and Puente Avenue and on Badillo Street between Azusa Avenue and Grand Avenue. However, bicycle facilities are notably absent on Badillo Street between Puente Avenue and Azusa Avenue, and on Ramona Boulevard between the El Monte Station and Durtee Avenue. In fact, the El Monte Station has virtually no bicycle route access, which limits multimodal commuting; however, Metro will be opening a secure bicycle parking room in 2013. There are more extensive east/west bike routes as compared to north/south, and connectivity through the corridor from both north and south is limited.

PEDESTRIAN CIRCULATION
The pedestrian environment along the Ramona-Badillo Corridor varies significantly. Some areas of the corridor have pleasant pedestrian environments that are conducive to walking. These areas include buffered sidewalks with landscaping, street trees, and pedestrian-oriented street frontages. Yet, many other areas of the corridor are adverse to pedestrian travel. These areas are characterized by missing sidewalks on one or both sides of the corridor, long gaps between crosswalks and signalized intersections, frequent curb cuts allowing drivers to cross the paths of pedestrians, and inadequate corner wheelchair ramps.

Left: Ramona Boulevard in El Monte. There are no sidewalks on the north side of the street and no crosswalks at the signalized intersection. Right: Citrus Avenue in Covina. The image shows an environment conducive to walking with pedestrian-scaled lighting, pedestrian-oriented frontages, and clear and safe crosswalks.
EMPLOYMENT

Over 20,000 people are employed by 2,347 businesses within one-quarter mile of the Ramona-Badillo Corridor. Service employment, in particular personal services, is the largest category of employment along the corridor. With a 0.37 employee to population ratio, the corridor is primarily residential in nature. This ratio indicates that many residents commute to work outside of the corridor.

By employment sector, the services sector (which includes lodging, automotive services, health services, legal services, education, and other personal services) accounts for the largest proportion of establishments (40%) and employees (43%). Retail trade accounts for 23% of the establishments and 20% of employment along the corridor, and the finance, insurance, and real estate sector account for 10% of the establishments.

SALES TAX

Each of the cities, with the exception of Baldwin Park, underperformed the State average in terms of sales tax growth from 2002 to 2010. Sales tax grew in Baldwin Park (the city with smallest base of the corridor cities), remained roughly even in Covina, and fell in El Monte and West Covina. El Monte has suffered the most severe contraction, in percentage terms, in sales tax receipts from 2006 to the present. Only West Covina and El Monte underperformed Los Angeles County from 2002 to the present.

HOUSING PRICES

Median sales prices of single-family homes are an indicator of the economic stability of an area. All four cities along the corridor were severely affected by the housing crisis. Prices for single-family homes peaked around the Ramona-Badillo Corridor during the spring of 2007 and declined through late 2009. Since 2009, prices have remained flat.

All of the cities have median sales prices lower than the Los Angeles County average of just under $335,000. El Monte has the highest median sales price while Baldwin Park has the lowest median sales price. This is unusual since Covina and West Covina have significantly higher household incomes than El Monte. Only Baldwin Park reports a sales value lower than the State wide median price of approximately $279,000; 17% lower than State median prices.

Left: the image shows the median sales prices of single family homes. Right: The chart shows the sales tax trend.
HEALTH AND WELLNESS

Health and wellness conditions for several key health indicators are poor relative to other jurisdictions in Los Angeles County. The Corridor Plan takes a broad view of health and wellness that includes the socio-economic factors that affect health, healthy behaviors, the physical environment, and access to health care. The following are key indicators for health and wellness along the Ramona-Badillo Corridor.

Economic Hardship: The social and economic conditions within a community are strongly associated with health. The Los Angeles County Public Health Department found a strong relationship between estimated life expectancy and economic hardship. The County uses the Economic Hardship Index developed by the Nelson A. Rockefeller Institute of Government to compare the economic conditions of one place to another. The Index standardizes the following six variables on a scale of 0-100 and then averages them together:

- Age: Percentage of population over age 65 and the percentage of population under age 18
- Education: Percentage of population over age 25 that did not graduate high school
- Employment Status: Percentage of unemployed workers age 16 and over
- Income: Household income
- Overcrowding: Percentage of housing units with more than one person per room
- Poverty: Percentage of population with income less than the Federal Poverty Level

El Monte and Baldwin Park rank among the communities with the highest level of economic hardship in Los Angeles County. Conversely, Covina and West Covina have Economic Hardship Index scores below the majority of communities in the County.

Life Expectancy: Life expectancy measures the length of time the average person is expected to live, and it is a key indicator of the overall health of a population. It measures the risks to a population for disease and premature death. El Monte (82.9 years) has the highest life expectancy at birth among cities on the Ramona-Badillo Corridor, exceeding the State (80.1) and Los Angeles Metropolitan Area (80.7) averages. Covina (80.6) and West Covina (80.5) slightly exceed the life expectancy for California, but their life expectancies are below the Los Angeles Metro Area average. The Baldwin Park PUMA (80) has the lowest life expectancy at birth among cities along the corridor, falling below both the State and Los Angeles Metro Area averages.

Asthma: The area around the Mid-Valley Corridor has relatively high rates of asthma hospitalizations and emergency department (ED) visits. Zip codes 91732 and 91731 in El Monte, 91723 in Covina, and 91706 in Baldwin Park have the highest rates of ED visits and are above the State average.

Obesity: Obesity results from interactions between diet, physical activity, and the built environment. Baldwin Park (29%), Covina (25%), and El Monte (28%) have rates of adult obesity higher than the County average (24%). The prevalence of child obesity is higher than the County average in Baldwin Park (29%) and El Monte (28%). All jurisdictions (city and county) are above the national average for the proportion of children and adolescents considered obese in 2005–08 (16.1%).
Diabetes: All four cities along the Ramona-Badillo Corridor have rates of diabetes mortality at or above the County rate, but all are well below the national average of 73.1 per 100,000 in 2007. Covina has the highest diabetes mortality (30 per 100,000).

Heart Disease: All Cities have rates of coronary heart disease mortality less than the County rate, but all jurisdictions are well above the national average (126 per 100,000 in 2007).

Access to Healthy Foods: Most of the area around the Mid-Valley corridor has “Good Access” to healthy retail food, based on the Centers for Disease Control and Prevention’s Modified Retail Food Environment Index, but the area around downtown Covina earned lower scores. Additionally, the area along Interstate 605 also has lower retail food scores. There are no “Food Deserts” as identified by the USDA along the corridor.

Transportation Safety: In general, average annual pedestrian and bicycle injury rates have fallen during the last several years across the nation. Since 2001, average annual pedestrian injuries have fallen for all cities along the corridor with average annual pedestrian injuries declining by 35% in Baldwin Park. El Monte had the highest rate by far of pedestrian injuries per 10,000 residents at 3.8, followed by West Covina at 2.4, Covina at 2.2, and Baldwin Park at 1.8.

Similarly, average annual bicycle injuries fell in Baldwin Park, Covina, and El Monte during the last part of the decade; however, injury collisions with motor vehicles increased for West Covina. The higher incidence of pedestrian and bicyclist injuries and fatalities in these communities is likely a reflection of both the infrastructure conditions and the higher rates of pedestrian activity that increase exposure to collisions. Figure 11 shows the frequency of motor vehicle collisions with pedestrians and bicyclists.
Motor vehicle crashes with pedestrians and bicyclists shows individual pedestrian and bicyclist fatalities and areas with high numbers of collisions between 2001 and 2010.

Data Source: Collision and fatality data are from the Statewide Integrated Traffic Records System (SWITRS), which is collected and maintained by the California Highway Patrol and distributed through the Transportation Injury Mapping System at U.C. Berkeley.
This chapter provides an overview of the characteristics of transit-oriented development (TOD), which is a critical tool to increase transit ridership and support high-quality transit along the Ramona-Badillo Corridor. Although all TODs share certain attributes, it is important to note that TODs vary greatly in terms of their design, development intensity, and role along a corridor. Some are lower intensity and more suburban in character, while others are major destinations with a mix of high-intensity uses. A diversity of TODs is critical to a corridor’s success, since each plays a unique role in the overall function of the transit network. Along with a description of what defines a TOD, this chapter outlines the development feasibility and key land use and transportation barriers to TOD for the Ramona-Badillo Corridor.

WHAT IS TOD?

Transit-oriented development, or TOD, is a type of development designed to maximize access to and use of public transportation while simultaneously reducing auto dependence for residents and workers. TODs accomplish these goals by integrating transit planning, mixed-use development, urban design, streetscape improvement, and reinvestment to create compact, walkable, mixed-use neighborhoods that link jobs and housing and are within an easy walk of transit stations. TODs offer more trip choices, support additional transit stops and transit lines, and make multiple modes of transportation – including walking, cycling, taxis, and car-sharing – more convenient and connected. Successful TODs exhibit a mutually reinforcing land use and transportation pattern.

TODs are transit-related neighborhoods and/or projects that encourage or require mixing of land uses centered on a high-frequency transit stop. TODs are built with a focus on pedestrian scale, pedestrian friendliness, and neighborhood connectivity, emphasizing features such as high intersection density, high quality pedestrian street crossings, pedestrian-oriented building entries and facades, and sidewalks with adequate widths and buffers. This pedestrian-oriented design makes it easier and more comfortable for residents and workers to access transit and services, since most transit users are pedestrians for at least some portion of their journey to and from a transit stop.

TODs typically have densities of ten to fifteen units per acre in a suburban environment, such as the Ramona-Badillo Corridor, but can have considerably higher density in urban cores or at key regional destinations, such as the El Monte Station. Other typical design characteristics include vertically mixing uses (e.g., retail on the ground level with residential and/or office on upper floors), active open space, and environmentally sustainable features, including reduced parking requirements. Creating a successful TOD, however, involves much more than just locating development next to a transit stop. A successful TOD requires safe, comfortable, and attractive connections between transit and the surrounding neighborhood, promoting pedestrian movement and transit use. The basic characteristics and strategies of a successful TOD are...
described individually below, although most are inter-related and successful TODs use many at once.

PEDESTRIAN-FRIENDLY DESIGN

Pedestrian-friendliness is a key characteristic of TODs. A friendly pedestrian environment helps maintain activity around transit stops, which generally makes other pedestrians feel more comfortable, enhances safety through “eyes on the street,” and helps support neighborhood commercial services. Typically, pedestrian-friendly design results in blocks that are shorter and more walkable, sidewalks that are adequately sized, buffers between pedestrians and street traffic, crossings that are well marked, sidewalks and pathways that are continuous and safe, sidewalk-fronting buildings with facades that are inviting and interesting to pedestrians, and a street environment that has a pedestrian scale.

MIX OF USES

A mix of land uses is important for creating vibrant, attractive transit-oriented development. A mix of uses makes it easier to take care of daily needs without driving, such as shopping, working, or dropping kids off at school. A variety of activities occurring throughout the day supports other neighborhood businesses as well, thus reinforcing the overall economic vitality of local commercial areas. As a rule of thumb, successful TODs should seek to have a high level of activity for at least sixteen hours per day, seven days a week. High levels of consistent activity are best achieved through a diverse mix of residential, office, retail, and entertainment destinations. A mix of local, city-wide, and regional destinations also increases the attractiveness of a transit stop to people living outside an area.

COMPACT DESIGN

The goal of compact design is to use land efficiently by intensifying land use in specific locations such as adjacent to transit stations. Compact design allows more efficient use of public amenities like sidewalks, streets, and parks, and complements mixed-use, pedestrian-friendly design to make pedestrian and bicycle use more convenient by reducing trip lengths.

EASY ACCESS TO FREQUENT AND RELIABLE PUBLIC TRANSIT

For a development to be truly “transit-oriented,” it must be easily accessible to frequent, reliable public transit. One important TOD strategy is to ensure that prospective riders can easily find nearby transit stops along a clear, direct, and convenient route. Another basic TOD strategy is to ensure that transit stops are close to where large numbers of people work, live, and shop. Typically, this means no more than a quarter- to half-mile walk distance, beyond which studies have repeatedly shown that most people are unwilling to walk. Good integration of the primary transit stop with other modes of travel is also critical, since it maximizes people’s choice of routes and mode. This may include co-locating bus and train stops, integrating quality bicycle and pedestrian routes and signage, providing safe and secure bicycle parking at transit stops, and providing bicycle storage on buses and trains.

HOUSING CHOICES

A TOD will be most vibrant and viable in the long run if it provides residents of all ages, income levels, and family sizes with adequate housing choices. Without a range of housing types, it is difficult for communities to accommodate a diverse work force, different preferences for housing, and changes in housing needs over time.
WALKABLE AND BIKEABLE NEIGHBORHOODS

Walkable neighborhoods are a core strategy for transit-oriented development. A walkable neighborhood is one that feels safe during all hours of the day and night, from both crime and traffic, and is easily accessible on foot or by bicycle, or other means besides an automobile. Encouraging walkable neighborhoods and easy pedestrian access to a transit stop and its surrounding uses supports the vitality, well-being and long-term economic success of both the neighborhood, local businesses and the transit that serves them. Bikeable neighborhoods have many of the same benefits and characteristics of walkable neighborhoods — high connectivity, a mix of uses and destinations, compact development patterns — but often require different on-street and off-street facilities.
TOD DEVELOPMENT FEASIBILITY

TODs are transit-related projects that encourage or require mixing of land uses. A number of studies have been completed in an attempt to gauge the buyer or renter perceived advantage of TODs as reflected in a willingness to pay a premium above average sales price. The track record of these projects in Southern California is relatively recent; however, this experience has shown a range of effects on residential costs form situations were transit accessibility has had no measurable effect on housing values to having as much as a 30% premium on sales and rent. Other development characteristics of TODs appropriate to the Mid-Valley Transportation Corridor include:

- **Density**: Suburban TOD’s include moderate to high densities of 15 to 30 dwelling units per acre and FAR’s as high as 4:1.

- **Mix of uses**: Mixed-use development in suburban TOD locations generates 5% to 10% higher transit ridership than single use employment centers. This type of development generates a critical mass through mixing and clustering residential, retail, and office. In addition, the Center for Neighborhood Technology reports that TODs may offer greater housing opportunities for lower-income residents given that TODs typically contain more rental housing than average neighborhoods in the same region (65% versus 39%) and have lower median gross rents.

- **Housing market niche**: The market for TOD housing is bifurcated. Young professionals and empty nesters are attracted to TODs for their contemporary and efficient designs, environmental sustainability, and proximity to transit. Projects attractive to this demographic can achieve premium rents. Newly formed households and households with high transit dependency are also key markets for TOD housing, but frequently these potential users will seek sub-market rate rents or look for other low-cost opportunities nearby.

Above: Mixed use building with residential units above ground floor retail. Below: Mixed residential.
Offsetting these advantages are a number of challenges that private investors face when developing a TOD project. TODs are still not fully recognized by capital markets as an economic / market fundamental and are harder to finance than conventional development. Other challenges include:

- **Market acceptance**: Public transit is not a profit-driven system, but real estate development is, and capital markets will continue to focus on real estate fundamentals rather than the larger environmental and public policy benefits of TODs. Often this will require significant public investments as a development partner in order to deliver the expected returns on investment that the market will demand.

- **Design**: Design and development policies require careful thought to meet public and developer needs / expectations. Higher densities are harder to configure in suburban locations and can result in a “transit island.” Furthermore, the design of the public realm of TODs is critical, especially for suburban locations.

- **Timing and complexity**: TODs often experience significant planning and entitlement delays due to their complex nature. In general, only developers with significant mixed use and infill project development experience are equipped to successfully implement these projects.

In general, TOD sites have a particular character. They are either sending sites that serve to distribute people throughout the region, or they are receiving sites that are principal centers of employment. This is a continuum rather than a complete binary relationship, and in general, TODs include a mixed-use development strategy; however, successful TOD projects tend to be oriented more towards one or the other of these types of functions.

EFFECT OF TRANSIT TYPE ON ECONOMIC AND MARKET CONDITIONS

The type of transit available at a site can have a determinative effect on the types of land uses that can be supported within a TOD. Moreover, different transit modes can influence the viability and attractiveness of a potential development location for garnering private investment. In the Mid-Valley Transportation Corridor, two types of transit are envisioned as having the potential to catalyze new TOD projects: commuter rail and bus rapid transit (BRT).

MetroLink Commuter Rail

The Metrolink Corridor travels on standard rail rights-of-way that includes long distance passenger and cargo traffic. Commuter rail systems, like Metrolink, focus on moving people to work, generally from a suburban location to regionally-important employment centers. Commuter rail stations in suburban locations tend to produce residually-oriented TOD projects with only limited commercial uses. The primary drivers of this include:

- **Frequency of service**: Unlike Los Angeles Metro rail, Metrolink tends to operate during peak commute times only. This limits the amount of activation of the site that can be driven specifically by transit.

- **Journey characteristics**: Metrolink reports that over 70% of riders on the San Bernardino Line use the system for a journey to work. The journey to and from work is different qualitatively from leisure or other non-work trips, and as a result, limits opportunities for additional development related to leisure and off-peak transit use.
• **Length of journey:** Commuter rail trips can involve journeys over an hour in length. This long duration creates a circumstance where the passenger will want to move through the intermodal switch from rail to bus or rail to private automobile as quickly and efficiently as possible. This too limits co-development opportunities at commuter-oriented TOD stations.

• **Use:** While commuter rail systems have the capacity to move large numbers of passengers over region-scale distances, the actual numbers of patrons at any individual station can be relatively modest. For the most part, commuter rail stations do not generate enough daily through-put to serve as activity nodes on a consistent and ongoing basis.

These limitations are counteracted by the value that a commuter rail station can have on residential development. Commuter rail TOD projects that have been successfully developed tend to have a mix of reasonably priced, market-rate housing along with a limited amount of sub-market-rate affordable units. The presence of commuter rail on site can be a catalyst to attract development that is oriented towards meeting regional housing demands.

Bus Rapid Transit

BRT is a mass transit system that has been used as a focus of TOD. Bus rapid transit systems have the advantage of lower capital costs compared to rail systems and have more route flexibility. BRT can run on dedicated rights-of-way or can move on existing streets. Examples of BRT in Southern California include the Metro Orange and Silver lines. There are significant challenges surrounding the creation of TOD projects at BRT sites. This is largely due to the perceived risk associated with the permanence of bus systems stemming from their ability to change service areas and routes. Key obstacles include:

• **Investment and infrastructure:** One of the great advantages of bus systems is their route flexibility. However, this results in minimal fixed infrastructure that lacks magnitude and permanence that is attractive for TOD development. This lack of permanence can create a risky environment upon which to base significant new investments and as such serves as a disincentive for private developers.

• **Scale dilution:** Another disadvantage of bus-based TOD is that it is difficult to concentrate development at one location given the large number of bus stops available. The significantly larger number of bus stops compared to rail stops leads to a dilution of the benefits that are generated by having transit on site at any one particular location.

• **Environmental effects:** Buses can have significant negative noise and emission impacts on adjacent development, and traditionally the presence of a bus line is seen as a dis-amenity for most categories of land uses. The close proximity of buses to streets can generate these negative environmental effects.

Offsetting advantages include:

• **Ease of system implementation:** Bus services are a far more cost effective option for lower density areas than implementing rail in these settings. This is an advantage that can speed up the delivery of transit to a development site; however, from the perspective of the private investor, implementation and operating costs of the transit system are not significant factors influencing their decisions but rather are an issue for
the transit operator. Indirectly, if the lower implementation costs can free up public capital for partnerships or for other site and infrastructure improvements, this can be an advantage.

- **Service frequency**: High frequency service is an important factor in TOD success. In a BRT system, headways can be as little as one minute. As bus density increases along the corridor, transit can deliver more riders to a TOD site and can conveniently distribute residents and employees from one.

PROGRAM ELEMENTS FOR TOD

As the economy in the San Gabriel Valley begins to improve and as population growth drives demand for more housing than is presently being supplied, interest in infill development at TOD sites is likely to occur. Due to current economic circumstances, it is difficult to find market support for major new developments along the corridor, but this development pressure is likely to reemerge over the intermediate to long term. Any program recommendations will need to be more closely specified as market demand begins to reemerge in the area. In general, the following program elements should be considered at TOD sites along the corridor.

- **Residential—multifamily higher density**: This can include 50 to 125-unit apartment buildings depending on the market and the size of the parcels that can be assembled. Other smaller-scale multifamily developments can also be included, such as multiplex and duplex projects, along the length of the corridor. In terms of the current investment cycle, multifamily residential infill projects are becoming more and more attractive as households transition to renter-occupied units due to general conditions in the economy and a constriction of lending criteria for home ownership. At the same time, historically low interest rates make financing of new multifamily housing projects attractive to investors.

- **Retail**: Retail uses included in the planning for the corridor should largely be supported by area residents, and transit ridership by itself supports approximately 10 ft.\(^2\) of space per thousand daily boardings.

- **Commercial office**: These uses should focus more on professional services and live-work spaces attached to multifamily residential units, rather than true office space. Corridor commercial office tends to require nodes of high accessibility and higher land costs that can support vertical mixed-use development. For the most part, commercial office uses will be opportunistic in nature along the corridor and will be used to fill in intestinal space within new projects.

- **Government office**: Unlike commercial office, government uses can be an important contributor to development along the Mid-Valley Corridor if appropriate tenants can be identified. Public service uses can be beneficial TOD tenants by driving activity on the site. In terms of financing, public sector partners can serve as credit tenants that can form the basis of conventional bank financing. Local government uses would also complement the existing Baldwin Park Civic Center.

- **Public uses**: A successful TOD generally includes a highly amenitized public realm. This can be something as simple as a transit plaza or a more elaborate park and open space system.
KEY LAND USE AND TRANSPORTATION ISSUES AND BARRIERS TO INCREASED TRANSIT USE AND TOD

Along with the economic and market factors that will determine the feasibility of TOD in the Ramona-Badillo Corridor, a number of other significant barriers must be considered when planning for change in the corridor. These key issues and barriers are listed below. This information is derived from discussions with key stakeholders in the corridor and the existing conditions analysis. Specific recommendations to overcome these barriers are described for each focus area and the corridor as a whole in subsequent chapters of this plan. Additional information about these issues and barriers is provided in Appendix C.

- Limited development opportunities outside of downtown areas: The opportunities for new transit-supportive development are primarily located in the downtown areas and at the junctions of major arterials. These opportunity sites tend to be underutilized commercial and industrial parcels, creating a tension between “highest and best use” development potential and preservation of existing commercial and industrial uses.

- Conflicts with existing residential uses: The majority of the Mid-Valley Corridor is surrounded by single-family residential uses. Not only are these areas very unlikely to change in the future, but developing transit-oriented districts adjacent to these neighborhoods will be challenging due in part to community opposition where neighbors believe higher density development may bring traffic, air pollution, noise, and crime into their neighborhoods.

- Lack of transit-supportive densities and connectivity east of downtown Covina: East of downtown Covina, near Barranca Avenue, the urban form transitions from moderate density neighborhoods into neighborhoods that are more suburban in character. Lower densities and reduced connectivity make high-frequency transit service more difficult to support and limit the opportunities for capturing new transit riders.

- Need for walkable blocks: Small, well-connected blocks promote walking, offer more direct routes between destinations such as transit stations, and provide greater accessibility to local and regional destinations. Shorter block lengths also tend to provide safer, less congested places for people to travel, as smaller blocks disperse traffic more readily. Areas along the corridor between the downtowns tend to have blocks larger than 800 feet, which are typically less walkable and pedestrian-friendly.

- Inconsistent, non-pedestrian-oriented street frontages: Areas where the street frontage consists of sound walls or backs of buildings are less likely to transition into transit-supportive districts. The street frontages also tend to be inconsistent on both sides of the corridor, meaning that one side of the street may be a sound wall, while the other side is a parking lot.
• **Excessive parking areas:** Much of the development along the corridor employs typical suburban parking standards, providing an ample quantity of off-street parking in large, open surface lots. Surface parking breaks the urban environment; consumes valuable land that could be used for higher-value uses; creates an added expense and issues for developers, businesses, and residents; presents a blank facade for pedestrians; and provides little incentive for people to take transit or alternative modes if an automobile is available to them.

• **Lack of single transit route which traverses the entire corridor:** BRT is typically implemented along existing higher performing bus routes. These routes may have higher ridership or perform well with respect to other traditional transit metrics, such as ridership per revenue mile. Since these higher performing bus routes have a track record of outperforming other comparable routes, they typically become the candidates for conversion to BRT. Currently, there is no single route which traverses the entire Mid-Valley corridor. Since there is no continuous route, a transit agency or a funding agency will have difficulty determining how BRT might perform in this corridor.

• **Overlapping transit agencies:** There are several transit service providers in the corridor including regional and local transit routes, sometimes with overlapping routes. For example, Metro Route 490 overlaps with West Covina Transit. Since there are so many providers, it may be problematic for new transit users to understand how the services relate to each other and how to use each service effectively.

• **Gaps in bicycle network:** Class II bike lanes are present along much of the corridor (from Dufree Avenue in El Monte to Orange Avenue in West Covina, and from Azusa Avenue in Covina to Grand Avenue). However, a number of significant gaps remain. There are no bicycle facilities along the corridor in West Covina, and the bicycle facilities do not extend to the transit station in El Monte. In fact, the bus station has virtually no bicycle route access, which limits access to and from the station.

• **Barriers to transit access by pedestrians:** Even in those areas of the corridor which are served by the existing transit system, pedestrian accessibility can be challenging. For example, some of the residential areas are segregated by sound walls, fencing, and other physical barriers. There are large areas of the corridor where sidewalks are missing both for east-west roadways and connecting north-south roadways as well. Even if pedestrians wanted to access transit on foot, the route is often circuitous, reducing the likelihood that users will walk to transit or destinations along the corridor.

• **High levels of transit use:** In several areas along the corridor, the level of transit usage exceeds 10% for commute trips, which is equivalent to, or higher than, the County average. As such, it is possible that the ridership gains from existing drivers converting to transit users would be limited.
This page is intentionally left blank.
Envisioning the Mid-Valley Transportation Corridor Plan

As part of the process of creating the Envisioning the Mid-Valley Transportation Corridor Plan, an overall vision and a series of guiding principles for the corridor was developed. The vision is described as follows:

Over time, Ramona and Badillo Boulevards will be transformed from automobile-oriented thoroughfares into a series of beautiful, attractive main streets for the adjacent neighborhoods in El Monte, Baldwin Park, West Covina, and Covina. These main streets and surrounding neighborhoods will support increased transit use and the successful implementation of a proposed Bus Rapid Transit (BRT) route. The corridor will connect a series of safe, thriving, and vital communities where the needs of the residents are met by the many diverse and successful businesses and public services located along the corridor. The businesses and services will be supported by a diversity of new housing, including on the upper floors of mixed-use buildings and in new and upgraded housing in the surrounding neighborhoods. The initial strategy for transforming the Mid-Valley Corridor will be to prioritize public and private resources into a series of focus areas along the corridor. Over time, these areas will catalyze positive change throughout the entire corridor, providing replicable models that can be used to improve conditions between the downtowns of El Monte, Baldwin Park, and Covina. A unique characteristic of the corridor is that it will be served by safe and efficient alternative transportation – improved bus service, an attractive and safe pedestrian environment, and significant improvements to the bicycle network. Finally, the nearby neighborhoods will remain diverse, and their rich, diverse culture will be respected and celebrated.

The vision for the future of the Mid-Valley Transportation Corridor is comprised of eight overlapping guiding principles that describe the values and needs of the citizens of El Monte, Baldwin Park, West Covina, and Covina. These principles are identified below and provide a roadmap to implementing the vision.

BUILD UPON THE EXISTING ASSETS OF THE CORRIDOR

The Ramona-Badillo corridor connects the downtowns of El Monte, Baldwin Park, and Covina. These higher-intensity, mixed use, and pedestrian-oriented areas provide a precedent to build upon, allowing each community to enhance the existing urban form and block structure while pursuing incremental improvements in new development. Furthermore, the El Monte Station and the Metrolink stations provide access to employment, recreation, and entertainment opportunities throughout the greater Los Angeles region.

Mixed use buildings that engage the street along Citrus Avenue in Covina.
USE TOD TO CELEBRATE DIVERSITY

The areas of El Monte, Baldwin Park, West Covina, and Covina along the Ramona and Badillo Boulevards illustrate an extraordinarily rich cultural heritage, traveling through a very diverse portion of Los Angeles County. This rich diversity contributes to the uniqueness of the corridor and should be fostered by encouraging context-sensitive development and improvements to the corridor.

FOCUS TOD AS A CATALYST FOR POSITIVE CHANGE

The fundamental goal of this planning effort is to examine the corridor’s existing and potential functions, identify the transportation and mobility challenges, and identify the streetscape improvements, land use changes, and various policy changes that could help encourage transit-supportive development around a future bus rapid transit (BRT) route. While the Ramona-Badillo corridor was analyzed in its entirety, the strategy for the successful transformation of the corridor depends on the success of TODs at a few key locations. It is critical that efforts be focused on these key areas in order to realize the positive change along the entire corridor. There are two types of strategies the cities can use to accomplish this goal. The first is investing in physical improvements to the corridor and demonstrating commitment to and confidence in the successful placemaking of the area. The second is to help facilitate the investment of private funding through financial and other incentives and policy and regulatory changes.

ALLOW A DIVERSE MIX OF USES AT TRANSIT-SUPPORTIVE DENSITIES

The corridor needs to support transit through two primary means: by connecting and encouraging sufficient numbers of existing residents to use transit because of its convenience and proximity to where they live, and by providing new residents with the opportunity to live near transit. Existing neighborhoods may not offer or warrant much opportunity for change, while the corridor does offer such opportunities. Those opportunities need to be seen as key to supporting the viability of transit from a ridership perspective. Density in key focus areas should be higher than for other areas along the corridor.
CREATE BUILDINGS THAT SUPPORT TRANSIT AND THE PUBLIC REALM

Land use, building design, and transportation are distinct and interrelated elements of the built environment. How buildings are designed and the uses that occupy them will influence the feel of the public realm, the activities that take place in the public realm, and how the transportation system functions. New buildings and building renovations should be carefully designed to improve the public realm and support use of the transit system using the following strategies:

- Locate buildings at or near the sidewalk with active ground floor frontages to create an attractive and interesting pedestrian experience and shape the streetscape.
- Design buildings to be ‘good neighbors’ by stepping down in height and density to adjacent residential areas and placing the height on the Ramona-Badillo Corridor in order to shape the street.
- Integrate the public realm streetscape with the adjacent ground floors of buildings to create a seamless transition between public and private space. The streetscape and adjoining building facades should combine for a coherent and integral environment of sidewalk, transit stations, businesses, services and dwellings.
- Minimize vehicular access from the corridor by limiting curb cuts and intrusions across the sidewalk. This maximizes the amount of sidewalk frontage that is free of driveways, and helps make for a more continuous environment of storefronts and services.
- Reduce parking ratios for new buildings and encourage alternative parking strategies in the new buildings, such as unbundling parking from the cost of rents, creating car-share opportunities, or coordinating the purchase of bulk transit passes at reduced costs for residents in exchange for lower parking ratios.

Top: An integrated and coordinated public realm acts as an extension of the building’s ground floor. Middle: Mixed use buildings support transit. Bottom: Buildings front the street and step down in density.
CREATE BEAUTIFUL AND ATTRACTIVE STREETS UNIQUE TO EACH COMMUNITY

A goal to design "beautiful, attractive streets" encompasses a comprehensive desire for improving the streetscape, buildings, and overall aesthetics of the Mid-Valley Corridor in order to realize a clean, welcoming, and pleasant environment for people to live, socialize, and recreate. This can be achieved by the following strategies:

- Provide convenient and inviting pedestrian access from neighborhoods to the corridor by maintaining continuous sidewalks, street trees for shade, lighting, and traffic-calming.
- Minimize vehicular access from the corridor by maximizing the amount of sidewalk frontage that is free of driveways. Vehicle intrusion can be both dangerous and disruptive to pedestrians.
- Improve the visual character and pedestrian quality of buildings along Ramona and Badillo Boulevards through façade improvement programs, removing sound walls, and improving parking lots by planting shade trees and inserting better landscaping.

Top right: Sidewalks can become an extension of ground floor commercial uses. Top left: Buildings engage the street. Bottom right: Street furnishing, like benches and shelters enhance the street.
REINFORCE AND EXPAND TRANSIT CONNECTIONS

The success of the focus areas and the overall success of a transit-oriented corridor will depend in large part on the success of alternative transportation systems that serve the corridor. There are a number of strategies the cities should utilize to promote and ensure the success of the alternative transportation systems that serve the Ramona and Badillo Boulevards, including expanding public transit options, creating attractive and safe transit facilities, and developing a comprehensive parking strategy. Transit use will also benefit from the clear, direct, and comfortable connections to the El Monte Station and Metrolink stops.

ENHANCE BICYCLE AND PEDESTRIAN ACCESS TO THE CORRIDOR FROM ADJACENT NEIGHBORHOODS

To support transit and increased transit ridership, cities along the Mid-Valley Corridor need to improve pedestrian and bicycle safety to bring more people to transit. Activities to support walking and biking include improved pedestrian crossings, neighborhood traffic calming, safe routes to schools programs, and additional street lighting. Not only will these activities support transit, but creating more opportunities for “active transportation” that allow people to walk or ride a bicycle more safely and comfortably will result in better physical fitness, improved cardiovascular health, and reduced risk of diabetes.

ENHANCE ACCESS TO JOBS, ECONOMIC DEVELOPMENT AND ACCESS TO OPPORTUNITY

Fostering job growth and economic development along the Mid-Valley Corridor can help improve opportunities for economic advancement of the residents, improve their quality of life, and help new businesses develop. The unemployment rate along portions of the corridor far exceeds the surrounding areas, indicating a strong need for developing new jobs and expanded services along the corridor.
This page is intentionally left blank.
The Ramona-Badillo Corridor will continue to serve as an important transportation corridor in the San Gabriel Valley, attracting new residents and jobs nearby and refining its local and regional identity. Its critical role as a San Gabriel Valley amenity will be enhanced by the opening of the El Monte Station, the continued evolution of the downtowns in El Monte, Baldwin Park, and Covina into walkable mixed-use places, and the gradual transformation of other nodes along the corridor into places with more transit-supportive land uses.

This chapter contains recommendations for corridor-level improvements to the Ramona-Badillo Corridor as a whole. The section is divided into transportation strategies and land use / urban design strategies.

TRANSPORTATION

The Ramona-Badillo Corridor provides a significant opportunity to create an integrated land use and transportation system that will serve all modes of travel. Currently, the corridor is generally oriented towards automobiles with facilities for other modes located intermittently throughout the corridor. One key aspect of these recommendations is the development of a consistent approach to transportation throughout the corridor instead of the current discontinuous configuration.

Recommendations are provided for the following items:

- Corridor streetscape improvements including both cross-sectional elements and intersection treatments
- Bus transit improvements
- Bus Rapid Transit (BRT) improvements
- Bicycle network

CORRIDOR STREETSCAPE

The Ramona-Badillo Corridor streetscape refers to both cross-sectional and intersection elements. Cross-sectional elements refer to those items which are provided in the right-of-way including sidewalks, street tress, street furniture, and on-street parking. In comparison, intersection treatments are provided only at intersections and focus on the experience related to pedestrians crossing the street. This structure is important since both elements need to operate in harmony to create a comprehensive system.

Cross-Sectional Elements

Several conditions need to be met to create a safe and comfortable pedestrian environment which is conducive to walking. First, a sidewalk or some other type of legal walking path must
be present. Providing sidewalks limits the need for pedestrians to walk through private property, in the roadways, or take other alternative routes. Second, pedestrian pathways should have some type of physical separation from vehicles, particularly automobiles. This separation can occur through the provision of on-street parking, a landscaped buffer, or other similar bulwark. Third, walking paths with some kind of natural or man-made shade is important, particularly during the summer months. Fourth, the walking path should have some type of street furniture such as benches to allow users to wait or rest as needed.

The following section outlines a series of specific policy recommendations for the Ramona-Badillo Corridor.

Provide sidewalks: The first priority for the corridor should be the provision of sidewalks in all locations. Along sections of the Ramona-Badillo Corridor without sidewalks, pedestrians are forced to either walk in the bike lane or more likely cut through parking lots adjacent to the curb.

Use on-street parking as a buffer for pedestrians and reduce the need for off-street parking: Providing on-street parking can be beneficial in many locations throughout the Ramona-Badillo Corridor since it will serve two purposes. Primarily, on-street parking can serve as a buffer between the vehicles in the travel lane and pedestrians. Typically, on-street parking spaces provide a barrier of 8-10 feet. Even if a vehicle is not parked in this on-street space, the pedestrian is still physically separated from fast-moving automobiles. The second benefit is providing an alternative to off-street parking. Reducing the need for new projects to provide parking in off-street garages and lots can encourage development by allowing more of the parcel area to be used for buildings and open space. Therefore, on-street parking should be provided along the corridor wherever possible.

Provide street trees: Concurrently with the provision of sidewalks, the placement of street trees is also recommended. Street trees can serve several functions. First, when placed next to the curb they can serve as a barrier between on-coming traffic and the pedestrian. Second, they can also serve as a buffer between the pedestrians and adjacent land uses when planted between the sidewalk and the right-of-way line. Street trees provide shade and also improve
the overall aesthetic of the Ramona-Badillo Corridor. Though new landscaping and trees may contribute to increased maintenance costs, street trees should be provided to complement the sidewalks and other pedestrian facilities when feasible.

Intersection Treatments

While continuous sidewalks buffered by on-street parking and shaded by street trees would be highly beneficial to pedestrian travel, pedestrian conditions at intersections should also be addressed. There are five key elements of pedestrian facilities at intersections: crosswalks, high visibility crosswalks at key locations, pedestrian count down signals, ADA accommodations, and bulb-outs. The following section outlines a series of specific policy recommendations for the Ramona-Badillo Corridor.

Install crosswalks at locations along the corridor where sidewalks are being added: Most of the currently signalized intersections have striped crosswalks. However, there are other locations where crosswalks are provided only on certain legs. Given the recommendation to provide sidewalks wherever possible, crosswalks should be provided at all locations within the Ramona-Badillo Corridor where sidewalks are being added to ensure that persons using these sidewalks are able to cross the street safely and easily.

Add high visibility crosswalks at key intersections: A relatively recent trend is the installation of high visibility crosswalks which provide additional striping beyond what is typically provided. There are several other instances in the Ramona-Badillo Corridor where this ladder striping is implemented; however, the typical configuration is for the traditional double striping. The
advantage of this high visibility striping is that it provides an additional visual clue to a driver as they approach the intersection.

While this type of striping may not be necessary at all locations throughout the Ramona-Badillo corridor, they should be considered at major intersections and nodes throughout the corridor wherever possible. Additionally, this type of striping should be prioritized for locations with a high volume of pedestrian travel.

Install pedestrian count down signals: Pedestrian countdown signals are installed at signalized intersections and provide pedestrians with an estimate of time remaining to cross the street. Instead of the typical “Walk/Don’t Walk” system, these countdown timers provide the number of seconds remaining for pedestrians to finish crossing the street. Installing these timers is recommended at all traffic signals where pedestrians would be allowed to cross the roadway.

Address the needs of all travelers including those who are either visually impaired, hearing impaired, or are otherwise restricted: Use ADA guidelines to ensure that intersections are able to accommodate the requirements of individuals with disabilities. Specific issues which can be problematic include:

- Greater than ½” of vertical obstruction (trip and fall hazards)
- Missing or non-continuous sidewalks
- No curb ramps at intersections and driveways
- No crosswalks or pedestrian push-buttons at intersections

Intersections should provide the appropriate level of ADA accommodations, which typically occurs through the provision of truncated dome curb ramps since most of the other items identified were addressed previously.

Put in bulb outs or curb extensions in specific locations: bulb outs or curb extensions are used to reduce the crossing distance for pedestrians and also to narrow a roadway, which can reduce automobile travel speeds. There are no areas of the Ramona-Badillo Corridor which currently have curb extensions.

Similar to the high visibility crosswalks, curb extensions would be best implemented at those locations where there are high levels of pedestrian activity or to support areas of new development that might generate additional pedestrian activity. These curb extensions can also be located to support an existing or proposed transit service expansion. The bulb out can be used as a form of bus pull-out or bus bay to provide transit vehicles with a protected area to stop and for passenger debarkation and embarkation.
BUS SERVICE IMPROVEMENTS

Bus transit, including service operated by Metro and Foothill Transit, is an important component of the transportation system. Some specific improvements related to bus transit within the Corridor include new service, bus stop locations, bus pull-outs or bus bays, bus stop configuration, and service coordination. The following section outlines a series of specific policy recommendations for the Ramona-Badillo Corridor.

Add new transit service from the El Monte Station to the Metrolink Station in Covina along Ramona Boulevard and Badillo Street: Currently, the only route which extends throughout most of the Ramona-Badillo Corridor is Metro Route 190; however, this route does not travel along the entirety of the corridor. This route leaves the corridor and runs along San Bernardino Avenue near the eastern boundary of Baldwin Park, resulting in a service gap. A new route extending down the length of the corridor could also provide a roadmap for future BRT implementation.

Add bus stops to West Badillo Street: Bus stops are provided throughout the Ramona-Badillo Corridor at reasonable intervals. These bus stops tend to follow the existing transit services. However, there is a significant section of the corridor along West Badillo Street where the existing transit routes use San Bernardino Avenue instead of West Badillo Street. Additional bus stops would therefore be recommended along West Badillo Street, if the new service is provided as identified above.

Incorporate bus pull-outs or bus bays throughout the corridor: Along the Ramona-Badillo Corridor, there are several different configurations for buses to pick up passengers. Most of the bus stops within the corridor are simple curb-side stops without a bus bay or bus pull-out. At other locations, the bus stop is positioned adjacent to the on-street parking or bus bay is located adjacent to the on-street bicycle lane.

Where feasible, bus bays would be recommended along the Corridor. If bus bays are not feasible due to existing conditions, bus stops should be protected through the use of bulb-outs or on-street parking to create a space for the bus to pull over safely out of traffic and then reenter traffic as needed.

Coordinate transit service: There are multiple agencies providing transit service within the Ramona-Badillo Corridor including Metro, Foothill Transit, Baldwin Park Shuttle, West Covina Transit, El Monte Transit, Rosemead Transit, and Montebello Transit. Ensuring coordination between these services can enhance the experience of transit riders, which could increase transit use within the corridor.
One example where additional coordination would be helpful relates to maps and documents prepared by the transit agencies. For example, El Monte Transit produces route maps which show the route for each bus operated by the City. However, this document does not provide any information about routes run by other agencies such as locations for transfers, shared stops, or any related items. Other agencies already include this information. For example, the bus map maintained by Metro documents other transit routes within the study area. The Foothill Transit bus route map also includes transit routes for both Foothill Transit and Metro.

Four main recommendations related to service coordination are:

- The transit agencies should prepare materials documenting the intersections of routes between different agencies.
- These materials (maps, websites, etc.) should also document those stops at which a person can transfer between different routes.
- Service schedules should be coordinated to ensure that waiting time between any transfers is minimized.
- The transit agencies which provide service in this Corridor should meet regularly to coordinate service and notify each other of changes to routes, hours of operation, and other similar changes.

BUS RAPID TRANSIT

BRT has previously been proposed for the Ramona-Badillo Corridor. The Metro Long Range Transportation Plan (LRTP) has identified a potential BRT route along the Corridor, but has not identified funding for this improvement. This route is described as follows:

- Mid-Valley Rapid Bus Transportation Corridor: Ramona Avenue and West Badillo Street, terminating at El Monte Busway Transit Station

This improvement is not identified as one of the 34 funded BRT corridors within the LRTP. Given the funding status for the Mid-Valley route, implementation of BRT within the Ramona-Badillo Corridor would occur at a future undetermined time. Implementation of BRT would likely only occur if there is an existing transit line which provides high levels of ridership along a significant stretch of the corridor. The implementation of a new bus route along the entire length of the corridor which is heavily used could demonstrate a case for BRT implementation.

Prior to implementing BRT in the corridor, there are several measures that could be implemented that would facilitate future high capacity transit service in the corridor.

Add dedicated lanes for transit: Dedicated lanes were considered for the Ramona-Badillo Corridor but are not recommended at this time. This recommendation is based on the following criteria:

- In many locations, the corridor is generally built out with existing structures at or near the right-of-way line. As such, a significant widening of the roadway is not likely to be feasible.
- Converting one existing lane from a mixed-flow traffic lane to a bus-only lane could be problematic as well. The Ramona-Badillo Corridor generally has four travel lanes (two in each direction). The daily volumes within the corridor range from 10,000 to 37,000. The volumes are projected to increase to 12,000 to 38,000. There are two short segments where the traffic volumes are low enough to accommodate the conversion of a mixed-flow lane in El Monte and Baldwin Park. However, dedicated transit lanes on only a few short segments of the corridor are likely to be problematic if these lanes are provided only in limited areas of the corridor.
Within the existing curb-to-curb width, there is sufficient space to convert the existing
parking and bicycle lane to accommodate transit vehicles. This conversion, however,
would remove the bicycle lane which is not recommended.

One simplified form of dedicated lanes that could be implemented is queue jump lanes, which
allow transit vehicles to bypass congestion at intersections. Queue jump lanes usually convert
a right-turn lane into a lane which allows transit vehicles to travel through an intersection.
Wherever possible, any existing dedicated right-turn lanes should be studied to allow the
implementation of a queue jump lane at an intersection.

Improve bus stops: the bus stops within the Ramona-Badillo Corridor are configured in a
typical configuration with a shelter and a bench. If BRT is implemented within the corridor,
there may be a need to upgrade the bus stops to accommodate one or more of the following:

- Real time informational signage (**“Next Bus in 5 Minutes”, etc.**);
- Larger shelters for additional
 riders; and
- Additional benches since many
 of the shelters currently have
 only one bench.

As any potential BRT would likely be implemented at an indeterminate date
in the future (at least 10-20 years from now), it may be premature to
reconstruct bus stops to accommodate future BRT service. Instead, cities
should limit any encroachment on the
existing stops to ensure that there is
sufficient space for future upgrades of
the stops.

Install transit signal priority system: Transit signal priority provides transit vehicles with
preferential treatment at signalized intersections. These systems use transponders on transit
vehicles to communicate with traffic signals. When a transit vehicle approaches a traffic signal,
the traffic signal will recognize the oncoming vehicle and alter the traffic signal operations
accordingly. Typically, transit signal priority is implemented by extending a green phase for
movements carrying transit vehicles or truncating a red phase for a conflicting movement.

Since BRT typically benefits from transit signal priority, installing the infrastructure to support
this approach could facilitate the implementation of BRT. The most appropriate way to
implement transit signal priority would be for each city to provide accommodations for a system
prior to its implementation. Therefore, as each city is updating or replacing traffic signals in the
corridor, they should coordinate with Metro to determine whether transit signal priority
equipment should be installed and what equipment should be purchased.
BICYCLE NETWORK

Bicycling is an important travel mode within the Ramona-Badillo Corridor. The existing bicycle network provides bicycle access through and to the corridor including a Class II in-street bicycle lane. The recommendations related to bicycles include new facilities of all types (both on-street and off-street facilities), bike sharing, and bike parking. The following section outlines a series of specific policy recommendations for the Ramona-Badillo Corridor.

Complete the Class II bicycle network: There are existing or proposed Class II facilities along Ramona Boulevard and West Badillo Street throughout the corridor except in three segments. These segments are:

- El Monte Station to Durfee Avenue
- North Orange Avenue to Azusa Boulevard
- Grand Avenue to Covina City Limits

Implementing a Class II lane on the first segment would be problematic since the curb-to-curb width is less than 60 feet. There are currently four travel lanes and a painted median which accommodates turn lanes at the intersections. Implementing an in-street bicycle lane would require that all of the travel lanes be reduced in width to 10 feet or less, which is unlikely to be sufficient for the traffic volume including the buses which travel the corridor daily.

Add Class III facilities: Two Class III facilities are recommended for the Ramona-Badillo Corridor:

- Ramona Boulevard from the El Monte Station to Durfee Avenue
- San Bernardino Boulevard from Ramona Boulevard to North Lark Ellen Avenue

Classification of Bicycle Facilities

Class I bicycle facilities are off-street bicycle pathways that are typically used for recreational travel and also commuting purposes. There is one Class I facility which crosses the corridor in El Monte.

Class II facilities provide a high level of accommodation for bicyclists by given cyclists a dedicated space to ride within the roadway. There are existing or proposed Class II facilities along Ramona Boulevard and Badillo Street throughout the corridor except in three segments.

Class III bicycle facilities are implemented through signage which designates the roadway as a bicycle route but does not provide a dedicated lane as compared to Class II facilities. Two Class III facilities are recommended for the Ramona-Badillo Corridor.

There is sufficient curb-to-curb width on the remaining two segments to implement a Class II lane by restriping West Badillo Street, which would then provide a continuous Class II facility throughout all of the study area east of I-605. It is recommended that this Class II lane be implemented by the participating cities to provide a continuous bicycle facility.

Left: The image shows a Class II bike lane along the Ramona-Badillo Corridor.
The first facility would connect to the existing Class II facility on Ramona Boulevard at I-605. The second facility would connect the existing Class II bike lane on Ramona Boulevard with a proposed Class III bike route which parallels the corridor on San Bernardino Avenue.

Close additional gaps in the bike network: In addition to the facilities identified above, there are several small segments of Class II lanes which would need to be extended to connect to either existing facilities or major destinations along the corridor. Two of these routes are in El Monte, south of the El Monte Train Station, while the third is also south of the corridor in Baldwin Park.

Evaluate bike sharing at the El Monte Station: Bike sharing is typically installed at transit stations, educational facilities, and major employment destinations. One candidate location for a bike sharing station would be at the El Monte Station. It is therefore recommended that the City of El Monte coordinate with Metro and other agencies to investigate the suitability for a bike share facility at this location.

Encourage bike parking in non-residential, mixed use, and multifamily projects: One factor that influences the attractiveness of biking is bicycle parking. Bicycle parking should typically be provided at non-residential projects and larger multi-family projects since it is assumed that single-family homes have sufficient spaces to park bicycles. It is recommended that bicycle parking be provided throughout the corridor wherever feasible in the form of racks and/or cages.

Examples of bicycle parking racks are shown in the photo below.
LAND USE AND URBAN DESIGN

Transportation, land use, and urban design are inextricably linked; the way that one is designed and functions will determine how the other responds. Transit along the Ramona-Badillo Corridor will not reach its full potential without jobs, housing, commercial services, and other supportive land uses within a structure of well-connected, pedestrian-oriented blocks located a short distance from its stations. This means that land use and urban design will play an important role in the long-term success of high-quality transit in the corridor.

As discussed in Chapter 3, TODs share a number of common characteristics, including a mix of uses, compact design, and pedestrian-friendly patterns of development. Using these definitions of TOD, the corridor and four focus areas along the corridor were closely examined to evaluate the existing development pattern and future development potential, and to determine whether land use and urban design changes would support the investment in high-quality transit that is envisioned for the corridor.

The overall land use and urban design strategy for the Ramona-Badillo Corridor should be one of targeted, strategic improvement, not wholesale change. Along the majority of the potential transit nodes along the corridor, analysis of existing conditions and future development potential revealed limited opportunities for new development. Within most of these potential transit nodes, significant changes to land use and development patterns would only occur at a detrimental expense to the character of the surrounding neighborhoods.

Although the majority of the corridor will experience limited change in the future, the downtowns in El Monte, Baldwin Park, and Covina, the intersection of Peck Road and Ramona-Boulevard, and the intersection of Azusa Avenue and Badillo Street could experience intensification over time. For these areas, particularly the areas in and around downtown El Monte and Covina, the process of redevelopment and land use change has already begun. In addition, some of the change areas along the Ramona-Badillo Corridor are already covered by existing area plans that will continue to be implemented in the future (such as the Town Center Specific Plan and the El Monte Downtown Improvement Project [currently on-going]).

RECOMMENDATIONS

Allow transit-oriented residential densities and mix of uses: To support transit, the Ramona-Badillo Corridor needs to connect and encourage existing residents who live adjacent to the corridor to use transit and provide new residents who choose to live near transit with opportunities to do so. Many existing residential neighborhoods around the corridor should not and will not change, while focus areas and the intersections of some major streets do offer opportunities for change. Those opportunities for new development need to be seen as key to supporting the viability of high-quality transit from a ridership perspective. The densities in focus areas need to be higher than other areas along the corridor. Density should be addressed in ways that allows for distribution of varying densities in response to site adjacencies and neighbors. Densities should transition downwards away from the Ramona-Badillo Corridor, with higher densities along the corridor and lower densities near neighbors along the rear boundaries of a site.
Redevelop existing corridor retail into transit-supportive neighborhood centers: Transform existing, auto-dominated suburban centers into neighborhood destinations by introducing a diversity of uses, providing new pedestrian connections to adjacent residential areas, reducing the visual prominence of parking lots, making the centers more pedestrian-friendly and enhancing the definition and character of street frontage and associated streetscapes. Small, locally-owned businesses that serve the neighborhood should be prioritized along this portion of the corridor.

Enhance destinations along the corridor. Not only will the overall success of the Ramona-Badillo Corridor be dependent on expanding access to stations from nearby residential areas, but its long-term success will also be related to making station areas regional destinations. Many such destinations currently exist, including the El Monte Station, the downtowns in El Monte, Baldwin Park, and Covina, California State Pomona, and other civic features. As the corridor evolves, these destinations will have the benefit of enhancing the identity of the corridor, promoting ridership during non-peak hours, and promoting ridership in both directions during peak hours.

Maintain existing block and street structure: While there may be pressure to consolidate blocks and “take” streets in order to create a larger area for development, each city should maintain the existing block structure as much as possible, keeping streets to allow for a fine grained network of streets.

Sub-divide large blocks: Each city should encourage developers to sub-divide large blocks to create a fine-grained network of pedestrian-scaled blocks, to provide access to parking located behind buildings, and to establish new addresses for commercial and residential development. Sub-dividing blocks could be achieved by adding new alleys and/or streets.

Design buildings that support transit and the public realm and respect the adjacent neighborhoods: New buildings should be carefully designed using the following strategies:

- Locate buildings at or near the sidewalk with active ground floor frontages. Buildings shape the streetscape and support ground floor businesses and services. Dwellings should be located on upper floors.
Design buildings to be good neighbors while shaping the transit corridor. New development should locate larger volumes/massing on the corridor and smaller volumes/massing toward the rear of sites and alongside streets to transition building scale and activity from the more intense corridor to the less intense neighborhoods.

Design buildings to have as much visibility as possible on the Ramona-Badillo Corridor in order to transform the corridor into an appealing place. Building façades should be designed to have large transparent openings on the ground floor that enable businesses and services to be seen from the sidewalk and to view activity along the sidewalk.

Street Beautification: Each city should work to maintain consistency among landscape and streetscape elements along the Ramona-Badillo Corridor to create a more uniform approach to these items, including using trees and landscaping to create an attractive landscape.

Policy to Support Land Use and Urban Design Recommendations
Use the focus area plans to catalyze development along the Ramona-Badillo Corridor: Each city should take the necessary steps to study and then implement the focus area plans described in Chapter 7.
Create policies to target funding to areas with the greatest capacity to change: Potential transit nodes areas along the Ramona-Badillo Corridor vary greatly. Some areas, such as downtown El Monte, Baldwin Park, and Covina will evolve over time, while others will remain relatively stable with little growth and development. The areas with a greater capacity for change should receive higher levels of public support, as these are the places that will ultimately be most supportive of existing and expanded transit service. This support would include improved transit service and facilities, façade and building improvement, and pedestrian environment improvements.

Add affordable housing to focus areas: In the focus areas and at nodes, the City should increase the housing opportunities, particularly for affordable housing. Affordable housing should provide a broad range of housing types, including units designed for larger families to alleviate some of the crowding around the corridor.

Implement existing land use and specific plans: Along the Ramona-Badillo Corridor, there are a large number of studies and plans that have already occurred for portions of the corridor, including a Specific Plan for the Covina Town Center, a design study for the Baldwin Park Civic Center, design guidelines for Baldwin Park, the Gateway Specific Plan for El Monte, and the forthcoming Downtown Improvement Project for El Monte. Cities should aggressively implement existing development plans already in place in these areas, as many of these plans support pedestrian-oriented places and transit.

Use site design strategies and code framework: Where new development does occur, the cities should use the site design strategies and code framework to guide decision-making for all new projects within the corridor. This will ensure that future development and public infrastructure improvements are supportive of transit, neighborhood connectivity, and pedestrian activity. The site design strategies provide a series of standards for building location, site access, building massing and volume, frontage, open space, and land use. The code framework builds upon the design strategies to define six place types for the corridor, describing their intent and character and providing recommendations for the mix of land uses, building types, and building frontages in an area. Over time, buildings that support more pedestrian-oriented public space will be an important strategy for more successful TOD.

Create TOD-supportive development incentives: Each city should identify incentives for new development with transit-supportive uses and designs. The incentives do not necessarily need to intensify land uses. Instead, the incentives should make it easier for projects to achieve the development densities outlined within the existing zoning code, which will allow redevelopment to occur naturally over time and lead to increases in transit ridership along the corridor. Potential development incentives include the following:

- A land use mix that increases transit-supportive uses, including neighborhood-serving retail and services;
- Reduced minimum parking requirements;
- Shared parking arrangements;
- Urban design for walkable streets, including building location, parking location, façade, window and entryway treatments, and building scale and massing; and
- Incentives or requirements for green building (such as LEED or GreenPoint Rated) and sustainable redevelopment of larger sites like the project focus areas (such as LEED for Neighborhood Development).

Revise off-street parking standards: As the Ramona-Badillo Corridor transitions from an auto-oriented corridor to a transit-oriented corridor, each city should review its parking regulations and revise the standards to facilitate TOD. Cities have a large number of options available to manage the quantity of parking, including reducing the parking requirements for new
development in TOD areas, converting parking minimums to maximums, facilitating shared parking, and providing public parking.

In addition to managing the quantity of parking, each city should develop design standards for parking lots and/or structures. Parking should be placed behind, below, or beside buildings, and each building should be oriented to the street not the parking lot. If the parking lot is adjacent to the street, parking lots should be screened with landscaping. Parking lots should also introduce trees and other aesthetic improvements in parking lots.
This chapter describes best practices in the areas of transit-oriented development, urban design, site planning, building design, parking, and land use. These practices are organized into a system of design recommendations, which relate to the current conditions and the vision for the Ramona-Badillo Corridor. This chapter does not contain standards for the cities along the Ramona-Badillo Corridor, but site design strategies to support TOD. These strategies are intended to be used in conjunction with the code framework developed in Chapter 8.

The chapter provides guidance about the six basic elements of design, and it includes sections on the following topics:

- Blocks, streets, lots, and building placement
- Access, parking, and service
- Building massing and volume
- Building frontage
- Open space
- Land use character
SITE LAYOUT, BUILDING LOCATION, & WALKABLE STREETS

The cornerstone of active urban environments - places where small business and residences mix comfortably - is a network of walkable streets and small to medium-sized blocks. Such an urban fabric is easy to navigate on foot, on a bicycle or by car, whereas larger blocks or streets with narrow unpleasant sidewalks discourage residents from leaving their home on foot. Buildings that face the streets with shopfronts, front doors and living room windows complete the basic pattern of sound and timeless neighborhood fabric.

New development along the Mid-Valley Corridor should strive to produce human-scaled buildings within an interconnected network of short blocks. Buildings activate the sidewalk with ground floors that accommodate commercial, civic or housing with service, civic or housing on upper floors. Individual buildings may vary in how they respond to and shape the streetscape while contributing to the intended physical context for the sub-area. A key aspect of site organization is to locate each building with at a minimum its front lot boundary aligned with the adjacent street (public or private). A fine-grained development pattern is crucial to promoting walkability and vibrancy.
ACCESS, PARKING, AND SERVICE

Even a fine street and block network can be rendered uninviting by allowing vehicular access to undermine the pedestrian network. Large and frequent private driveways onto the Mid-Valley Corridor - together with numerous parking lots fronting the thoroughfare - have created long, dead stretches that are unsafe and unpleasant for residents, while also adding to traffic congestion along portions of the corridor. To address this problem, the sidewalks should be prioritized for pedestrian use, and vehicular access points should minimized, and generally located on side streets, where feasible.

The goal for new buildings should be to reduce the overall parking footprint while providing secure and reliable parking and vehicular access for employees and residents, as well as limited on-street parking for customers. To the extent possible, vehicles take access from the rear of lots or from side streets. Where access is necessary from the primary corridor, it should be designed as an integral component of the building façade(s) and to minimize intrusion across the streetscape. Use of landscaping, architectural screens, or other methods of minimizing the impact of parking on the streetscape is strongly encouraged.

Entries to on-site parking/service are designed to maintain continuity of building facades and streetscapes as in the parking screen frontage shown.

On-street parking - diagonal and/or parallel as appropriate for the location - is a vital component in the overall parking system, especially along a corridor with significant commercial activity.

Parking and service are located on the side street to maintain continuity of the corridor streetscape.

Three-story building with a pedestrian-scale frontage facing the corridor. Parking is located on the side street to maintain the positive appeal of the building front.
BUILDING MASSING AND VOLUME

To define the urban space of the corridor, and to protect the character and livability of the adjoining neighborhoods, the height of infill development should generally be massed toward the corridor and away from neighboring residences. Locate larger building volumes near or along the Mid-Valley Corridor with smaller volumes toward the rear and sides of sites for compatible transitions with neighbors along side streets and rear lot boundaries. Building height can transition downward moving from the front half to the back half of a site, making them more compatible with the scale of the historic lotting and buildings of the corridor. Massing breaks are intended to produce a 3-dimensional effect that results in building sizes or the visual effect of building sizes that are compatible with the vision for the corridor.

Buildings can combine a variety of dwelling choices in response to their site: flats/lofts over ground floor along the corridor, walk-up flats and townhouses around interior courtyards, walk-up townhouses on side streets.

Tall ground floors (> 14 feet high) along the primary corridor enable a wide variety of stores, restaurants, services, office or live-work activity.

A paseo provides frontage for businesses and services while breaking down the visual presence of the building along the sidewalk.

Carefully designed articulation can give the impression of smaller, individual volumes which do not overwhelm the streetscape.
BUILDING FRONTAGE

Frontage is the manner in which a building and a lot meet the street. The frontage is the “face” of any private development, and is also the “seam” that stitches it to the public realm of its neighborhood. Frontages along the corridor should be designed to welcome customers and visitors who are on foot, and should also provide the appropriate degree of privacy, in the case of residential use, or visibility in the case of commercial uses.

Frontages along the Mid-Valley Corridor should shape and activate the public streetscape of commercial, mixed-use, and residential streets and public open spaces with ground floors that enable compatible land use activities and upper floors that provide ‘eyes on the street’. Streetscapes in commercial or civic areas will necessarily differ from residential streetscapes based on their unique roles. The priority is to have buildings with appropriate frontages that respond to and support their intended physical context. A key characteristic is that all buildings front on a sidewalk, paseo, courtyard, playground, park or plaza.

Example of mixed-use building facing sidewalk with large ground floor store front windows, awnings, and smaller upper floor windows.

Example of ground single family houses with porch frontages.

Corner locations are emphasized as different from the rest of the building through frontage design and increased transparency.
OPEN SPACE

The more intensely an urban area is developed, the more important it is that the open spaces within lots and along the streets are well designed and useful. These range from fully public streets and parks, to semi-private secure courts and gardens, to private yards and patios.

Shared open space should be a part of new development along the corridor for use by the general public. Open spaces vary in their size and functions and are adjacent to the public right-of-way for ease of access and visibility. Within lots and buildings, open space is provided as shared open space for residents and visitors. A key aspect of open space is that it directly relates to and supports the adjacent buildings and their activities.

Open space occurs at two general levels: shared public space such as a plaza, park or playground and shared private space such as a courtyard.

Successful open space is fronted by active ground floors of businesses and / or dwellings that act as ‘eyes on the street’.

The location, length and width of an open space are prioritized over the actual square footage of the space.

Open spaces of a variety of types, shapes, and sizes, are integral components of any successful urban place.

Courtyards are popular places for casual enjoyment, restaurants or for use by offices.
LAND USE

Diversity and flexibility of use are the hallmarks of land use in a lively urban corridor. Promoting flexibility allows for non-residential uses on the ground floors of buildings virtually throughout the corridor’s length. It provides for more intense commercial uses in certain locations, and limits the scale of businesses in others, to foster a more residentially-oriented neighborhood character. These recommendations offer guidance in support of allowing broad flexibility of use, which will allow development to adapt to economic shifts over time, while ensuring enough compatibility of use to protect the value of both residential and commercial properties.

Commercial, service and civic activities are strongly encouraged as well as a variety of housing choices that leverage the presence of transit and walkable neighborhoods. Within walking distance of transit stations, a wider and more intense range of uses is generally appropriate. For buildings located on side streets or within large sites, the mix of dwelling types may be different from those of buildings fronting on the corridor and above office or retail uses.

Shopping, restaurants, services and offices activate ground floors, especially at street intersections.

Land use activity is primarily pedestrian-oriented with certain areas committed to more vehicular-oriented uses.

Ground floor housing occurs away from street intersections and with the appropriate frontage design for compatibility with the intended physical context.

Street corners are best for retail, restaurant and civic activity.
7 | FOCUS AREA PLANS

The Ramona-Badillo Corridor is twelve miles long, crosses multiple jurisdictions, and traverses a wide variety of land use and frontage conditions. As a result, the key issues and vision for future development varies significantly along the corridor. To respond to these unique conditions, focus area plans were developed for four specific portions of the corridor to expand upon the overall corridor vision, guiding principles, and site design strategies. These focus area plans evaluate a range of TOD strategies and TOD types. The four focus areas are:

- **Peck Road and Ramona Boulevard**: Ramona Boulevard from Stewart Street to Ferris Road, and the surrounding blocks;
- **Baldwin Park**: Ramona Boulevard between Bresse Avenue and Bogart Avenue;
- **Central Badillo Street**: Badillo Street between Azusa Avenue; and
- **Covina**: the area bounded by North Second Avenue (east), the Metrolink tracks (north), North Third Avenue (west), and West Cottage Drive (south).

Each focus area plan includes the following information:

- **Existing conditions**: an overview of existing land use, form and character, and general plan land use designations.
- **Key issues**: a description of several of the key issues in the focus area.
- **Vision and big ideas**:
 - **Block structure and opportunity areas**: illustrations of the existing block pattern and recommended changes to the street and alley network in order to facilitate TOD. The illustrations show opportunities for making a more walkable environment, the implementation of streetscape improvements and frontage repair strategies, and adding new infill buildings.
 - **Place type recommendations**: recommended land use character types within each focus area. These land use character types provide general guidance on the physical character of the area and are described in more detail in chapter 8.
- **Focus area recommendations**: a list of land use, urban design, public realm, and transportation recommendations based on the corridor-level recommendations and design guidelines. These recommendations provide additional information on implementing the big ideas for each focus area.

The following section contains a series of diagrams that show a range of TOD strategies and illustrative diagrams. It is important to note that these diagrams are purely illustrative of the long-term potential for TOD in these areas and are not specific recommendations that any particular properties be redeveloped at any particular time. Instead, the purpose of these diagrams is to help each city to visualize the potential for TOD along the Ramona-Badillo Corridor, and to help them transition each place towards the vision described for the corridor.
The Peck Road and Ramona Boulevard focus area is in El Monte. It is generally located between the railroad right-of-way west of Stewart Street, Peck Road on the south, the alley servicing the Northgate shopping center on the east, and Woodville Drive on the north. The focus area is very culturally diverse, with over 50% of the population in the surrounding blocks identifying as Non-White or Hispanic.

EXISTING LAND USE

The Peck Road and Ramona Boulevard focus area is characterized by a diversity of uses, including single family residential, multifamily residential, industrial, and commercial/services. Industrial and commercial/services land uses occupy the majority of land in the focus area. The focus area contains a wide diversity of commercial and retail uses, including pharmacies, restaurants, banks, a grocery store, and big box commercial stores.

Along Ramona Boulevard to the west and Peck Road to the north and south are commercial and industrial uses. North and east of the focus area are residential areas. These areas contain a mix of single family and multifamily housing.
EXISTING FORM AND CHARACTER

North of Ramona Boulevard, buildings along Peck Road are generally single story commercial buildings with parking lots in front, built between the 1960s and 1990s. South of Ramona Boulevard, Peck Road is characterized by single-story, auto-oriented commercial buildings built between the 1990s and 2000s. The street frontage includes the El Monte Shopping Center and commercial building pads at the corners. These businesses include the Big 5 Sporting Goods and Hometown Café. Most buildings along Peck Road were developed with the parking lot between the street and the building.

Ramona Boulevard is dotted with shallow commercial lots containing small buildings and parking lots. Several of these buildings date from 1950 or earlier. In general, there is no consistency in the location of parking for these buildings. Some have parking lots in front and others have parking along the side.

The development pattern along Stewart Street is defined by a variety of shapes and sizes of light industrial buildings. Most of these buildings were constructed before 1950. On the western side of Stewart Street is a mini-storage facility and a Southern California Edison Service Yard. Along the mid-block of Lee Lane, there is a small cluster of single-family homes dating from the 1920s to the 1940s.

GENERAL PLAN DESIGNATIONS

The Peck Road and Ramona Boulevard focus area overlaps with two General Plan “Strategic Areas:” Peck Road and Auto District. The General Plan provides specific guidance for Strategic Areas. For the Auto District, the vision is to create the premier location to buy and service a vehicle in the San Gabriel Valley. The vision for the Peck Road corridor is to provide new, high-quality housing and commercial/shopping amenities in a pedestrian-oriented environment.

The General Plan’s land use designations for the Peck Road and Ramona Boulevard focus area are generally supportive of the vision and the desire to transform portions of Ramona Boulevard into a more pedestrian-oriented and higher density destination. The General Plan designates Peck Road as mixed/multi-use (25-35 dwelling units per acre and up to 1 FAR). The area south of Ramona Boulevard is designated regional commercial (1 FAR).

KEY ISSUES

The following key issues were identified in the Peck Road and Ramona Boulevard focus area:

- Unattractive street character along Ramona Boulevard, especially the lack of street trees and pedestrian-scaled lighting and other infrastructure.
- Non-pedestrian-oriented street frontages, where the street frontage is a sound wall, parking lot, or fence.
- Large parking lots and vacant lots along Ramona Boulevard or Peck Road.
- Traffic congestion, especially along Peck Road, where traffic volumes exceed 29,000 vehicles per day.
- Use of Peck Road as a through route to Interstate 10.
- Relatively high rates of motor vehicle collisions with bicyclists and pedestrians, resulting in injury and fatalities.
- Lack of sidewalks on the north side of Ramona Boulevard.
- No bicycle facilities on Ramona Boulevard or Peck Road.
- Tension over maintaining existing light industrial uses and establishments.
- Auto-oriented vision for the “Auto District” Strategic Area.

VISION AND BIG IDEAS

Over time, the character of the Peck Road and Ramona Boulevard focus area will be transformed from an auto-dominant arterial street flanked by parking lots to a commercial main street with wider sidewalks, street tree rows, curbside customer parking, and commercial shopfronts along the frontages. Where existing successful retail centers are set back from these streets behind large parking lots, the design character transformation of Peck Road and Ramona Boulevard may be accomplished with new liner retail and restaurant pad buildings located close to the front of the property line. Cross streets south of Ramona Boulevard will be upgraded to quality neighborhood streets with infill residential building types along one or both sides, providing new transit-oriented housing within easy walking distance of shops, jobs, and transit.

To implement these ideas, the following diagrams illustrate urban structure adjustments and a recommended distribution of place types – including land uses, development types, and scale – for the Peck Road and Ramona Boulevard focus area. Chapter 8 provides additional information on the intent of each place type and recommendations for the building types, building frontages, and building intensities within each area.
FIGURE 13: BLOCK STRUCTURE AND OPPORTUNITY AREAS DIAGRAM FOR THE PECK ROAD AND RAMONA BOULEVARD FOCUS AREA

FIGURE 14: PLACE TYPE DIAGRAM FOR THE PECK ROAD AND RAMONA BOULEVARD FOCUS AREA
FOCUS AREA RECOMMENDATIONS

The following section includes specific recommendations for the Peck Road and Ramona Boulevard focus area. These recommendations are intended to be used in concert with the corridor recommendations for land use and transportation.

Land Use and Urban Design

- Create a mixed-used node at Peck Road and Ramona Boulevard: Capitalize on the major intersection of Peck Road and Ramona Boulevard to develop a major retail and mixed use center. The area could include a variety of neighborhood-serving retail uses with multifamily housing located above.

- Transform Peck Road into a mixed-use corridor: Building on the General Plan and existing zoning, the buildings and uses along Peck Road should transform from an auto-oriented form into a higher-density pedestrian environment. Prioritize cleaning up the street frontages along Peck Road with quality commercial buildings that face the street and sidewalk and that generally position parking to the rear of the structure, or if necessary to the sides, with well-landscaped and shaded lots.

- Create a major regional retail center along Peck Road: Capitalize on the adjacency of the Peck Road to Interstate 10 and on traffic volumes to create a regional retail center. The new center could potentially allow big-box retail, but the stores should be designed to maintain a walkable streetscape, place the parking behind the building in a well-shaded lot, and reduce the total footprint of the parking lot.

- Maintain existing block and street structure: The City should maintain the existing block structure, keeping streets such as Lee Lane and Stewart Street, to allow for series of well-connected, pedestrian-scaled blocks.

- Sub-divide large blocks: The City should encourage developers to create a new street in order to connect Ramona Boulevard to Peck Road.

- Encourage housing in the focus area: As the City develops Peck Road and Ramona Boulevard into a regional center, developers should be encouraged to incorporate
housing into their projects. This housing should include both market-rate and affordable units. Housing could be accommodated on upper floors of buildings in the commercial types, and in the neighborhood center place type recommended for Lee Lane.

- **Allow conversion of small industrial parcels to live-work spaces**: Over time, the City should encourage the conversion of the industrial parcels along Stewart Street to live-work artist spaces.
- **Develop large surface parking lots**: Opportunity sites for new development include existing large surface parking lots.
- **Discourage new fast food restaurants**: The City should consider implementing regulations that limit new fast food establishments in the focus area.

Public Realm

- **Plant street trees**: The City should use trees and landscaping to create an attractive landscape along Peck Road and Ramona Boulevard, and along the neighborhood streets connecting to the corridor. These trees should be low-maintenance and drought resistant.
- **Add open space**: Consider converting the corner of Peck Road and Lee Lane into a neighborhood green to bring needed open space to the area.

Transportation

- **Establish alleys for service and parking access**: Adding internal alleyways that provide vehicle access allows for street frontages to be prioritized for pedestrians.
- **Complete the sidewalk network on Ramona Boulevard**: Sidewalks are generally present within the focus area. However, there is one segment of eastbound Ramona Boulevard west of Peck Road where a sidewalk is missing. As this site is redeveloped, adding this sidewalk would be highly beneficial for pedestrian circulation.
- **Add high visibility crosswalks and pedestrian count down timers at the Ramona Boulevard and Peck Road intersection**.
- **Consolidate driveways**: One specific recommendation for this location is the possible consolidation of driveways. The current sidewalks are interrupted in numerous places by curb cuts. Consolidating access could reduce the number of driveways and sidewalk intrusions, which would concurrently reduce the conflicts between vehicles and pedestrians.
- **Add a bicycle route**: A Class III bicycle route extending from the El Monte Station to the existing Class II bicycle lane to the east of this location is encouraged.
- **Allow shared parking**: As the intersection of Peck Road and Ramona Boulevard is transformed, allow existing businesses and new development to share parking capacity.
BALDWIN PARK

The Baldwin Park focus area is located between Bresse Avenue and Bogart Avenue. The focus area is home to Baldwin Park City Hall, Morgan Park, and the Baldwin Park Metrolink Station. The Baldwin Park focus area has a relatively high population density, and over 50% of the population in the surrounding blocks identifies as Non-White or Hispanic. Between 5% and 10% of the population uses public transportation to commute to work.

FIGURE 15: EXISTING CONDITIONS FOR THE BALDWIN PARK FOCUS AREA

EXISTING LAND USE

The Baldwin Park focus area is characterized by a diversity of land uses. The area contains commercial/services, civic, office, and multifamily residential. Along Ramona Boulevard, the primary land use is commercial and services, with a large number of individual small businesses, including restaurants, banks, a pharmacy, medical and dental offices, and other neighborhood-serving businesses. There are also a number of public land uses in the area. Morgan Park is located on Ramona Boulevard, which houses the Esther Snyder Community Center and other community activities, such as a concert in the park series. Within the focus area, Ramona Boulevard itself is surrounded by a variety of residential uses, including single family, duplex, and multifamily housing.

To the north and south of the Baldwin Park focus area, the surrounding neighborhoods consist primarily of housing. Multifamily housing immediately adjacent to the corridor transitions into
single family homes. To the east of the Baldwin Park focus area, land use transitions into a mix of industrial uses. To the west of the focus area, land uses along the corridor change from commercial to multifamily residential.

EXISTING FORM AND CHARACTER

Ramona Boulevard in the Baldwin Park focus area has a unique form and character compared to the rest of the corridor. From Baldwin Park Avenue to Bogart Avenue, the Pacific Electric’s San Bernardino Line’s right-of-way was converted into frontage streets on one or both sides of the Ramona Boulevard. The street is characterized by commercial and mixed-use buildings along frontage drives parallel to Ramona Boulevard. These frontage roads are one-way drives with angled parking on both sides and a wide sidewalk beside the shopfronts. This configuration allows pedestrian circulation to move off Ramona Boulevard and onto calmer, safer frontage drives. Many of the buildings facing the frontage street between Pacific Avenue and Maine Avenue date from 1950 and earlier.

West of Baldwin Park Avenue and east of Maine Avenue on the north side of the street, Ramona Boulevard is dominated by modern, auto-oriented commercial buildings. Often, these buildings have parking lots between the building and street.

Moving south from Ramona Boulevard along Bresse Avenue, Stewart Avenue, and La Rica Avenue, the character of the blocks changes from commercially-oriented to residential and institutional. Along Bresse Avenue and Stewart Avenue, there are residential structures on the narrow and deep lots, some of which date to the 1920s. There is also a church and a school in the southern portion of the area along Baldwin Park Boulevard.

GENERAL PLAN DESIGNATIONS

The Baldwin Park focus area overlaps with two General Plan “Focus Areas”: Downtown/Metrolink and West Ramona Boulevard Corridor. The General Plan provides specific guidance for Focus Areas. For the Downtown/Metrolink area, the vision is to re-establish a “mixed use pedestrian district” through building design and limited setbacks and envisions re-designing the auto-oriented shopping centers to become pedestrian-oriented and mixed-use places. The General Plan calls for mixed use development with a density up to thirty dwelling units per acre, with buildings close to the edge of the sidewalk and parking behind structures. The vision for the West Ramona Boulevard Corridor Focus Area is to transition the strip commercial to “garden multifamily” on the south side to mirror existing multifamily development on the north side of the street.

The General Plan’s land use designations for both the Downtown/Metrolink and West Ramona Boulevard Corridor areas are generally supportive of the vision and the desire to transform
portions of Ramona Boulevard into a more pedestrian-oriented and higher density destination. The General Plan designates Ramona Boulevard as appropriate for a variety of uses, including mixed use (30 dwelling units per acre and up to 1.5 FAR) and garden multifamily residential (8.8 to 12 units per acre).

URBAN LAND INSTITUTE CIVIC CENTER STUDY

In 2010, the Urban Land Institute convened an expert panel to examine the Civic Center area in downtown Baldwin Park. The expert panel developed several design concepts for the downtown. This group identified opportunities for infill development along Ramona Boulevard (including new 3-4 story mixed use development) and extending the retail frontage. The draft concept also called for increased development east of the Metrolink station and improved connections between the Metrolink station and Ramona Boulevard.

FIGURE 16: URBAN LAND INSTITUTE BALDWIN PARK CIVIC CENTER STUDY

KEY ISSUES

The following key issues were identified in the Baldwin Park Boulevard focus area:

- Lack of a gateway element to signal entry into downtown Baldwin Park.
- Non-pedestrian-oriented street frontages, where the street frontage is primarily parking lots, particularly from Breeese Avenue to Baldwin Park and east of Maine Avenue on the north side of the Ramona Boulevard.
- Downtown is divided by expansive Ramona Boulevard.
- Lack of a link between the Metrolink station, City Hall, and Morgan Park (and the Community Center).
- A high proportion of housing in the area has more than 1.5 people per room, a standard for overcrowding.
- Use of Ramona Boulevard as a through route to the Interstate 605.
- Large traffic volumes along Ramona Boulevard and at the intersection of Ramona Boulevard and Maine Avenue.
- Relatively high concentration of motor vehicle collisions with bicyclists and pedestrians.
- Large parking lots and vacant lots along Ramona Boulevard.

VISION AND BIG IDEAS

The Baldwin Park focus area will build on the unique street frontage of Ramona Boulevard to enhance and extend the historic “frontage parking lanes” to provide convenient on-street parking and enable intensified retail activity fronting the street. This will create an attractive and pedestrian-oriented shopping experience that provides a link between the downtown, Morgan Park, and the Metrolink station. Large retail centers along Ramona Boulevard will be transformed into corridor commercial and mixed-use buildings with retail space facing Ramona Boulevard and housing or employment uses on the upper floors. Streets in the focus area will include comfortable sidewalks and rows of street trees with large canopies.

To implement these ideas, the following diagrams illustrate urban structure adjustments and a recommended distribution of place types – including land uses, development types, and scale – for the Baldwin Park focus area. Chapter 8 provides additional information on the intent of each place type and recommendations for the building types, building frontages, and building intensities within each area.

FIGURE 17: BLOCK STRUCTURE AND OPPORTUNITY AREAS FOR THE BALDWIN PARK FOCUS AREA
FOCUS AREA RECOMMENDATIONS

The following section includes specific recommendations for the Baldwin Park focus area. These recommendations are intended to be used in concert with the corridor recommendations for land use and transportation.

Land Use and Urban Design

- **Continue frontage road pattern along Ramona Boulevard:** Build on the existing one-way, frontage drives with angled parking and wide sidewalks to provide excellent pedestrian circulation on calmer frontage drives.

- **Extend the pedestrian-oriented form and character of Ramona Boulevard:** As development occurs in the future, the City should collaborate with businesses to extend the main-street form and character of Ramona Boulevard west of Baldwin Park Avenue and east of Maine Avenue on the north side of the street. Over time, the City should focus on replacing the big-box stores with a finer grain of development, relocating parking to the rear of the block, and adding new main-street commercial buildings along Ramona Boulevard.

- **Sub-divide large blocks:** The City should encourage developers to create a new street that would connect La Rica Avenue to Baldwin Park Boulevard, breaking up a long block that is nearly a third of a mile in length. New development should look to create new lots that are approximately 160 to 180 feet deep and that are suited to courtyard...
or multi-family housing. Additional new streets could include extending Morgan Street to Maine Avenue and continuing Sterling Way between Baldwin Park Boulevard and Ramona Boulevard.

- **Develop large surface parking lots**: Opportunity sites for new development include existing large surface parking lots.
- **Encourage infill development on City-owned parcels**: The City of Baldwin Park owns several parcels along Ramona Boulevard, and the City should encourage new, mixed-used development with active retail space on the ground floor and housing on the upper floors.
- **Transition to single family residential uses**: When adjacent to existing single family housing in the southern portion of this focus area, multifamily residential types should be compatible in scale and character with houses.

Public Realm

- **Consider adding a civic building or gateway element at the northeast corner of Baldwin Park Boulevard and Ramona Boulevard**: Define the corner with a project that engages the street, defines the intersection, and encourages people to enter the park.
- **Add public art and murals**: The City should consider adding a mural to the back of the building on the corner of La Rica Avenue and Ramona Boulevard to enhance the experience of pedestrians travelling to Ramona Boulevard.
- **Plant street trees**: The City should use trees and landscaping to create an attractive landscape along the entire length of Ramona Boulevard, and along the neighborhood streets connecting to the corridor. These trees should be low-maintenance and drought resistant.
- **Create frontage entries**: Work with building owners to create front entries for buildings along streets, such as Maine Avenue, to continue the existing pattern.
- **Enhance the facades of the buildings along the frontage drive of Ramona Boulevard**.

Transportation

- **Establish alleys for service and parking access so that street frontages can be prioritized for pedestrians**.
- **Improve crossings of Ramona Boulevard at Maine Avenue, Pacific Avenue, and Baldwin Park Avenue**: The City should continue to make pedestrian and bicycle improvements to the Maine Avenue, Pacific Avenue, and Baldwin Park Avenue intersections in order to improve safety and connect the neighborhoods north of Ramona Boulevard to downtown Baldwin Park. Improvements could include extended sidewalks, crosswalk paving, and longer pedestrian crossing signals.
- **Add high visibility crosswalks**: High visibility crosswalks are recommended at the Ramona Boulevard and Baldwin Park Boulevard intersection. This intersection has the typical crosswalk striping and should be upgraded with ladder striping or another similar approach. For instance, the Ramona Boulevard and Maine Avenue intersection already has pavers in the crosswalk areas, which function as high visibility crosswalks.
- **Add count down timers**: Countdown pedestrian timers should also be installed at the two major intersections, Ramona Boulevard and Baldwin Park Boulevard and Ramona Boulevard and Maine Avenue.
- **Maintain or reconstruct sidewalks to provide pedestrian access**: Currently, there are sidewalks throughout the focus area, and no additional sidewalks are recommended.
along Ramona Boulevard, Baldwin Park Boulevard, or Maine Avenue. However, when new development or redevelopment occurs, these existing sidewalks should be maintained or reconstructed to provide pedestrian access.

- Reconfigure frontage road entrance driveways at the Ramona Boulevard and Maine Avenue intersection. These driveways are configured at 45 degree angles instead of a typical 90 degree angle. This configuration allows a turning vehicle to enter the driveway at a higher speed than a traditional driveway. Reconfiguring these driveways to use the more traditional 90 degree approach is therefore recommended. This driveway layout change would create an environment that is more conducive for pedestrian travel.

- Allow and encourage shared parking: Existing businesses and new development should be encouraged to share parking when feasible.

A before and after photosimulation of the Ramona Boulevard and Maine Avenue intersection. The existing bus stop is greatly upgraded to accommodate BRT service, new street trees are planted, and a bicycle lane is striped green for high visibility.
COVINA

The Covina focus area lies between Covina’s vibrant traditional downtown and the Covina Metrolink Station. It consists of a walkable, interconnected street and block network centered on Citrus Avenue between North Second Avenue (east), the Metrolink tracks (north), North Third Avenue (west), and Cottage Drive (south). The focus area includes Civic Center Park and is adjacent to the Covina Metrolink station. The Covina focus area is primarily a commercial and industrial district.

FIGURE 19: EXISTING CONDITIONS FOR THE COVINA FOCUS AREA

EXISTING LAND USE

The Covina focus area is characterized by commercial and industrial uses. Citrus Avenue is the commercial heart of downtown Covina, lined with commercial and other services. The northern portion of the focus area contains light industrial uses and a parking structure for the Metrolink station. Along San Bernardino Road and Citrus Avenue, there are two former car dealerships and several other auto-related uses. There are also a few single family homes and medical uses along Orange Street and Cottage Drive. The southeast quadrant of the focus area includes Civic Center Park, fire and police facilities, and a new multi-story residential development.

South of the Covina focus area, Citrus Avenue continues the main street commercial uses. There are several churches and mixed commercial uses to the east of Citrus Avenue. The
area to the west of the focus area houses medical uses and the Citrus Valley Health Partners Hospital. Surrounding these areas is single family housing.

EXISTING FORM AND CHARACTER

Citrus Avenue between Orange Street and Italia Street is the core of downtown Covina. The area is high-value, main-street commercial. Parking lots are located approximately 120 feet behind the commercial buildings. The interior blocks along Orange Street and Italia Street are populated with quaint single-family homes from the 1920’s and 1930’s. The corners of 3rd Avenue and Cottage Drive, and 3rd Avenue and Orange Street house relatively new medical office buildings.

Along San Bernardino Road west of Citrus Avenue, there are auto-oriented, auto-serving buildings. South of San Bernardino Road a former car dealership and gas station date from the 1950s and earlier and north of San Bernardino Avenue is another former auto dealership from the 1960s. Opposite these buildings and running north along Citrus Avenue are a mix of historic main-street commercial and auto-serving structures.

GENERAL PLAN DESIGNATIONS

The downtown Covina focus area is located within the town center or downtown area of Covina. The General Plan calls for special attention to be taken with regards to the character of downtown in order to increase social and economic activity in the area. It also calls on the City to develop a Town Center Specific Plan to provide a framework for land use, transportation, and infrastructure decision-making.
TOWN CENTER SPECIFIC PLAN

Covina’s downtown is regulated by the Covina Town Center Specific Plan (TCSP). The specific plan covers the entire Covina focus area. The Specific Plan’s vision is for a diversity of residential and non-residential uses, and aims to continue the “traditional downtown with small-town ambience.” The Specific Plan identifies six Focused Activity Areas. The four Activity Areas which lie within the focus area are described below:

- **TCSP-2 Residential**: the area is intended to encourage housing, up to 30 units per acre. Non-residential uses would be allowed in a mixed-use development.
- **TCSP-3 Institutional Uses**: this area provides an opportunity for developing City offices and facilities, parking facilities, churches, and other institutional uses. Residential and mixed-use development is also allowed in the area. The allowable density for areas adjacent to existing single family homes is 1.5 FAR and 1.0 to 2.0 for other areas. The residential density for this area is between 15 and 35 units per acre.
- **TCSP-4 Mixed-Use**: This is located throughout the focus area and allows a FAR of up to 1.5 for areas adjacent to single-family residential and 2.0 to 2.5 for other areas. The residential density for these areas is between 15 and 35 units per acre.
- **TCSP-5 Retail and Service Core**: This is the retail core of the downtown and the intent is to protect historic buildings while still allowing “compatible” new development that enhances the urban/small-town character and expands economic development opportunities. The allowed non-residential FAR is between 2.0 and 3.0 and residential density is between 20 and 40 units per acre.

Figure 20: Covina Town Center Specific Plan
KEY ISSUES
The following key issues were identified in the Covina focus area:

- Integrating new development with the existing visual character of the historic Downtown.
- Auto-oriented uses and streetscape environment between downtown Covina and the Metrolink station.
- Poor pedestrian circulation to and from the parking structure and Metrolink platforms.
- Lack of a coherent pedestrian connection from the Metrolink station to downtown and to Badillo Street.

VISION AND BIG IDEAS
Building off the success of Downtown Covina, the Covina focus area will extend the downtown character to the Metrolink station. The existing main street character and form of Citrus Avenue will be continued to the railroad right-of-way, spreading the pedestrian-oriented retail and restaurant environment northwards from Badillo Street to the Metrolink Station. Iconic car dealerships will be adapted to modern uses that take advantage of the large interior and potential forecourt spaces. New infill development along the streets to the east and west of Citrus Avenue will include multifamily housing that locates residences in close proximity to transit, while supporting Citrus Avenue’s successful retail and restaurant environment, and introducing mixed-use infill development along San Bernardino Road. The area will also become a stronger transit hub by improving the presence of the Metrolink platforms through the construction of a station structure and plaza and the provision of a link from Metrolink to the potential BRT route.

To implement these ideas, the following diagrams illustrate urban structure adjustments and a recommended distribution of place types — including land uses, development types, and scale — for the Covina focus area. Chapter 8 provides additional information on the intent of each place type and recommendations for the building types, building frontages, and building intensities within each area.
FIGURE 21: BLOCK STRUCTURE AND OPPORTUNITY AREAS DIAGRAM FOR THE COVINA FOCUS AREA

FIGURE 22: PLACE TYPE DIAGRAM FOR THE COVINA FOCUS AREA
FOCUS AREA RECOMMENDATIONS
The following section includes specific recommendations for the downtown Covina focus area. These recommendations are intended to be used in concert with the corridor recommendations for land use and transportation.

Land Use, Urban Design, and Public Realm

- **Continue main-street commercial along Citrus Avenue to the Metrolink station:** The City should encourage new buildings that replace empty parking lots and transition auto-oriented commercial structures to main-street commercial. These new buildings should have pedestrian-oriented facades and be built close to the street.

- **Replace car dealership building north of San Bernardino:** Add new corridor-serving commercial or mixed-used development to this block, providing vehicle parking in a nicely landscaped parking lot located behind the buildings. New residential units, such as courtyard housing, could be added behind the mixed-use development.

- **Renovate or reuse the former car dealership showroom on the southwest corner of Citrus Avenue and San Bernardino Road.** The original building, which dates to 1930, could be renovated. The space in front is a potential forecourt space which could be utilized by restaurants or other entertainment uses.

- **Transition away from light industrial and auto-serving uses:** Much of the area north of San Bernardino Road appears ready for reinvestment and lies within easy walking distance of the Metrolink station. This area has great potential for transit-oriented infill development including both housing and employment uses. Over time, the City should look to convert light industrial uses in the northern portion of the focus area to higher intensity uses. For example, the block bound by Citrus Ave, Front Street, North 2nd Avenue, and San Bernardino Road could become residential, with podium courtyard housing or rowhouses. If remaining commercial and industrial uses can be limited to those that generate relatively low levels of light, noise, fumes, and truck traffic – and are restricted to normal business hours – employment uses and new residential uses might comfortably coexist in this area.

- **Encourage housing in the focus area:** Like the Citrus Walk project, the City should pursue housing in the downtown area to support local businesses. Where feasible, this new housing should include both market-rate housing and affordable housing. For example, consider replacing the vacant auto dealership along Orange Street adjacent to 3rd Avenue with podium courtyard housing, facing the existing historic bungalows across the street.

- **Maintain and expand existing block and street structure:** Unlike the development pattern along School Street, the City should maintain the existing block structure for any new development to allow a fine grained structure of blocks for pedestrians. Inserting new streets and alleys at the time of redevelopment is critical to assure a strong pedestrian-orientation for the streets near the station.

Public Realm

- **Focus façade improvements:** Funding for façade improvement programs should be concentrated in the Covina focus area. Existing buildings should be improved with greater transparency on the ground floor of the structure to enhance the pedestrian-
oriented character of the street. Specific improvements should be focused on main-
street commercial buildings along Citrus Avenue and buildings along Front Street.

- **Plant large shade trees:** Few street trees are present within the focus area, and
therefore enhancing the streetscape should be a major priority. In particular, construct a
visually-appealing landscape wall along Geneva Place and 3rd Street North which is
currently barren and unattractive.

Transportation

- ** Maintain or reconstruct sidewalks to provide pedestrian access:** Currently, there are
sidewalks throughout the focus area, and no additional sidewalks are required along
Badillo Street, San Bernardino Road, or Citrus Avenue. However, when new
development or redevelopment occurs, existing sidewalks should be maintained or
reconstructed to provide pedestrian access.

- **Install pedestrian count down timers:** Pedestrian count
timers should be installed at the Badillo Street and
Citrus Avenue intersection to facilitate pedestrian travel in
the focus area, particularly across Badillo Street.

- **Upgrade crosswalks with pavers:** The crosswalks at the
Badillo Street and Citrus Avenue intersection were
recently upgraded with pavers. Other crosswalks in this
location should be upgraded with similar treatments to
create a consistent urban main street environment. In
particular, the crosswalks at the San Bernardino Road
and Citrus Avenue intersection should also be upgraded
with either pavers or another type of high visibility
crosswalk.

- **Extend transit from the El Monte Station to the focus
area:** A transit line should extend from the El Monte
Station to the Covina focus area and/or Metrolink
station. If this transit line is implemented, then a bus
stop would be needed on the eastbound Badillo Street at the intersection with Citrus
Avenue, and San Bernardino Road.

- **Add a Metrolink station building:** The City should work with Metrolink to construct a
station building and transit plaza at the corner of Front Street and Citrus Avenue.

- **Improve pedestrian circulation to and from Metrolink platforms and parking structure:**
The City could formalize pedestrian access off of Citrus Avenue with paseos between
infill commercial buildings.

- **Shift vehicular access to Metrolink parking structure:** Move vehicle access to the
parking structure away from its current alignment to Geneva Place and North Third
Avenue in order to reduce pedestrian conflicts.

- **Create new alleys:** To create better access to Citrus Avenue and San Bernardino
Road, the City should work with developers to insert new alleys in existing blocks.
These internal alleys would allow access to new structures, while limiting curb cuts on
the main streets.

- **Construct proposed bicycle lanes:** A Class II bicycle lane is proposed for Badillo
Street, and a Class III bicycle route is also proposed for Citrus Avenue between Badillo
Street and San Bernardino Avenue.
BADILLO STREET FROM VINCENT AVENUE TO AZUSA AVENUE

The Badillo Street focus area is located in West Covina and Covina. It extends from North Vincent Avenue to Azusa Avenue, running north to San Bernardino Road. While commercial development dominates the area, the Badillo Street focus area also houses a relatively large number of Non-White or Hispanic residents living in rental housing.

FIGURE 23: EXISTING CONDITIONS FOR THE BADILLO STREET FOCUS AREA
EXISTING LAND USE
The Badillo Street focus area is characterized by commercial, industrial, and institutional uses. The western block consists of commercial uses at the corners of San Bernardino Road and Badillo Street, a three acre vacant parcel in between, and a Southern California Edison transformer site along Badillo Street. The eastern portion of the area consists of a self-storage facility and gas station at the corner of San Bernardino Road, a vacant parcel previously occupied by a gas station at the corner of Badillo Street, and a large shoe factory in between. There is also a small, gated industrial park along San Bernardino Road.

The areas to the east are occupied by residential uses — primarily multifamily south of San Bernardino Road and single family to the north. Residential uses, primarily single family, surround the focus area. The parcels along Azusa Avenue and Rimsdale Avenue are occupied primarily by commercial buildings: the Covina Square Shopping Center on the east side of Azusa Avenue, a Home Depot on the block between Azusa Avenue and Rimsdale Avenue, a commercial center anchored by Big 5 Sporting Goods along Azusa Avenue north of San Bernardino Road, and Brunswick Covina Bowl on the west side of Rimsdale Avenue.

EXISTING FORM AND CHARACTER
The Badillo Street focus area is characterized by large blocks oriented towards automobile travel. Generally, commercial and industrial parcels west of Lark Ellen Avenue have parking lots between the street and buildings. These buildings were constructed between 1960 and 1990. Like the commercial blocks in the focus area, the residential blocks between Lark Ellen Avenue and Rimsdale Avenue are large and not scaled to the pedestrian. In many cases, parking lots or the sides of multifamily buildings face Badillo Street, and these frontages do not present a friendly face to pedestrians. Sidewalks are built immediately adjacent to the street. These residential buildings were constructed between the 1950s and 1980s.

East of the small residential zone, the parcels along Azusa Avenue and Rimsdale Avenue are occupied primarily by auto-oriented commercial buildings. These parcels are characterized by large buildings setbacks with a parking lot positioned between the street and building. While the Brunswick Covina Bowl dates from the 1950s, most of the remaining buildings were constructed after the late 1970, including the Home Depot, which was built in 2007.

GENERAL PLAN DESIGNATIONS
The Badillo Street focus area is covered by the West Covina and Covina General Plans. Only a very small portion of the Badillo Street corridor is in the City of West Covina, and this land
is designated as planned development (Faith Community Church), office, and medium to high residential development to the east side of the church.

The Covina General Plan does not include a specific vision or series of policies describing the future direction of the Ramona-Badillo Corridor. The plan does, however, include a policy that the City should preserve the “predominantly low-rise and low- to medium-intensity character” of commercial corridors. The majority of the land use designations along corridor are residential, but there is a retail center along Azusa Avenue, north of Badillo Street.

KEY ISSUES

The following key issues were identified in the Badillo Street focus area:

- Soundwall running along the southern portion of Badillo Street from Vincent Avenue to approximately Lark Ellen Avenue, which limits pedestrian access to the site.
- Large blocks, often greater than 1,000 feet in length.
- Non-pedestrian-oriented street frontages, where the street frontage is parking lot, particularly along Azusa Avenue and Vincent Avenue.
- Moderate concentration of motor vehicle collisions with pedestrians and bicyclists, including collisions which have caused injuries and fatalities.
- High daily traffic volumes of Vincent Avenue (20,800), Lark Ellen Avenue (28,200), and Azusa (33,800).
- A relatively large concentration of households without vehicles.
- No bicycle facilities along Badillo Street or San Bernardino Road.

VISION AND BIG IDEAS

Over time, the Badillo Street focus area will be transformed into a series of transit-oriented neighborhoods surrounding mixed-use corridors serving the adjacent neighborhoods. The focus area will house main street shopping districts on Vincent Avenue, Azusa Avenue, and San Bernardino Road. These streets will transition from auto-dominant arterial streets flanked by parking lots and relatively blank building walls to streets with wider sidewalks, street tree rows, curbside customer parking and commercial shopfronts along the frontages wherever possible. Where existing successful retail centers are set back from these streets behind large parking lots, the commercial corridors will add new retail and restaurant pad buildings at the property line to accomplish the visual transformation of the street. New streets will be introduced throughout the focus area to form walkable blocks with good street frontages for residential infill building types along one or both sides, and to provide new transit-oriented housing within easy walking distance of shops and jobs and transit.
To implement these ideas, the following diagrams illustrate urban structure adjustments and a recommended distribution of place types — including land uses, development types, and scale — for the Badillo Street focus area. Chapter 8 provides additional information on the intent of each place type and recommendations for the building types, building frontages, and building intensities within each area.

Figure 24: Block Structure and Opportunity Areas Diagram for the Badillo Street Focus Area
FOCUS AREA RECOMMENDATIONS

The following section includes specific recommendations for the Badillo Street focus area. These recommendations are intended to be used in concert with the corridor recommendations for land use and transportation.
Land Use, Urban Design, and Public Realm

- **Formalize private drives and alleyways:** The cities should work with land owners to transition private drives into formal rights-of-way for service and parking access, so that street frontages can be prioritized for pedestrians.

- **Sub-divide large blocks:** The cities should encourage developers to create new streets and alleys to break-up large blocks. New streets provide new or improved pedestrian-oriented addresses for commercial businesses within the large commercial centers and valuable new residential addresses can be created within easy walking distance of shops and services.

- **Transition auto-oriented retail center at Vincent Avenue and San Bernardino Road:** Formalize and organize the center so that the parking is located in the center of the block with commercial frontages along the perimeters. A new service alley could be provided behind the center, with new residential lots along Morada Avenue.

- **Prioritize pedestrian-oriented commercial buildings:** The City should encourage new pedestrian-oriented buildings along Vincent Avenue, San Bernardino Road, Azusa Avenue, and Badillo Boulevard. The goal is to have as many street-fronting shopfronts as possible, with minimal gaps to accommodate access to parking beside and behind the buildings.

- **Utilize vacant and underutilized parcels:** There are good opportunities for infill buildings at the corners of Badillo Boulevard and Vincent Avenue, along Badillo Boulevard, and along Vincent Avenue. These infill opportunities can be used to catalyze new development.

- **Transition Azusa Avenue into a main-street commercial environment:** Add street-fronting, main-street commercial buildings along Azusa Avenue, well-landscaped and shaded parking lots in the rear, and residential uses behind, which transition into the single-family neighborhoods.

- **Add paseos along Azusa Avenue:** Paseos allow easy movement between commercial buildings and parking for shoppers.

Public Realm

- **Improve sidewalk and streetscape appearance:** Invest in façade improvements along Vincent Avenue for the existing shoe factory, while formalizing the parcel entrance from Vincent Avenue.

- **Improve the streetscape along Azusa Avenue, between Badillo Boulevard and Glentana Street:** The corner of San Bernardino Road and Azusa Avenue could become the commercial center of this area with streetscape upgrades.
• **Plant large shade trees:** There are minimal street trees within this focus area along West Badillo Street and Azusa Avenue; therefore, enhancing landscaping should be a major priority.

Transportation

• **Add sidewalks to formalized streets:** There are currently sidewalks within the focus area. When alleys are formalized into new streets as is recommended, sidewalks should be added, maintained, or reconstructed to provide pedestrian access.

• **Maintain or reconstruct sidewalks to provide pedestrian access:** Currently, there are sidewalks throughout the focus area, and no additional sidewalks are recommended along Badillo Street, San Bernardino Road, Azusa Avenue, or Vincent Avenue. However, when new development or redevelopment occurs, these existing sidewalks should be maintained or reconstructed to provide pedestrian access.

• **Add high visibility crosswalks and pedestrian count down timers:** The crosswalk markings were recently repainted at the intersection of West Badillo Street and Azusa Avenue; however, the crosswalks at this location and others throughout the focus area are still the traditional crosswalk markings. High-visibility crosswalks should be added at this main intersection and at Vincent Avenue and Badillo Street. If the area transitions to a more pedestrian-oriented neighborhood, crosswalks and count down timers should be added to the intersections at Badillo Street and Lark Ellen Avenue, at Badillo Street and Rimsdale Avenue, and at major intersections along San Bernardino Road.

• **Add bus shelters to the Badillo Street and Azusa Avenue stop:** The existing bus stop lacks a shelter in contrast to many of the other stops along the corridor. Installing a shelter at this location may encourage additional transit ridership. A bus shelter would also be more consistent with other locations throughout the corridor.

• **Explore adding bus pullout to the Badillo Street and Azusa Avenue stop:** The City should consider the option of providing bus pullouts as properties redevelop in the future.

• **Add a Class II bicycle lane:** Currently, there are no bicycle lanes on West Badillo Street or San Bernardino Road. A Class II bicycle lane should be added to Badillo Street, which would connect to an existing facility to the west and a proposed facility to the east.
This chapter provides a form-based code framework to guide land use and building form decision-making along the Ramona-Badillo Corridor. The code framework is a reflection of the vision and guiding principles for the corridor and implements the land use recommendations in Chapter 5 and site design strategies in Chapter 6.

The form-base code framework is organized as follows. Each focus area has a “Place Type” diagram, which allocates land use character areas. The place type diagrams are located in Chapter 7. The specific intent of each place type is described with a short narrative, illustrations, and a recommended standards table in the following section. The place type table contains suggestions for the allowable building types, recommended building frontages, and buildable areas. Additional information is provided on a series of transit-supportive block types and building frontages, which are referenced in the place type tables.

The code framework for the Ramona-Badillo Corridor is intended to guide future development along the corridor and within the focus areas. It is not intended to supersede or replace the existing provisions in the zoning for any city.

PLACE TYPES

Place types provide clear direction about how to create pedestrian-oriented places. Place types describe where private buildings are located and how buildings are designed to define and overlook public spaces in order to encourage pedestrian activity and foster a strong sense of community. These places are the foundation of transit-oriented environments.

Place types provide a more holistic description of a community’s expectations for the future than a typical “land use and circulation” element of a general plan or a zoning regulation. These place types can be thought of as a place-specific version of a “community design element,” which is present in some general plans and encompasses the subjects of land use, development intensity, and community character.

Place types are a simple way to describe the differences between character areas. For example, place types differentiate between a “main street” retail environment, where shops face a sidewalk with street trees and curbside parking, and a suburban shopping center, where shops face a large parking lot. Place types can also describe differences in residential types, illustrating multifamily residential development as a mix of housing types that blend well with adjacent single family homes.

The following section describes six place types for the Ramona-Badillo Corridor. This group of place types provides a range of character types and development intensities, ranging from main street commercial to single family residential.
MAIN STREET COMMERCIAL

The main street commercial place type is intended to provide a mix of ground floor retail, multifamily housing, office, and other services. The type is intended to generate a compact, mixed-use, walkable environment near transit stops. Buildings are located at the front property line, adjacent to the sidewalk, in order to generate an active public realm. Off-street parking is located behind buildings.

CORRIDOR COMMERCIAL

The corridor commercial place type is intended to be a pattern of commercial development where buildings facades face the street but in a less continuous and lower intensity pattern than main street commercial. Parking is located behind or beside buildings. This place type is applied to properties along major corridors and consists of single-use or mixed-use buildings with ground floor commercial and office or residential uses on upper floors.

LIFESTYLE CENTER COMMERCIAL

The lifestyle center commercial type is a variation of corridor commercial that accommodates “big box” stores. Wherever possible, buildings are located at the street frontage with common parking lots located behind the building. These lots can serve larger stores deeper on the lot. Parking lots are screened from the street and major drives provide access to the larger stores, which are built as small streets to accommodate pedestrians.

EMPLOYMENT COMMERCIAL

The employment commercial place type can accommodate a wide range of business uses, ranging from office and R&D to light industrial uses. Buildings are located near to and oriented towards the street. Parking and loading are located to the side or rear of the building. Buildings that can transition from retail to office to service commercial are encouraged.

NEIGHBORHOOD CENTER

The neighborhood center place type is intended to provide a smooth transition between main street commercial and surrounding single family homes. The type accommodates multifamily residential and some commercial uses. Buildings face tree-lined neighborhood streets, which are located behind landscaped front yards and have front doors and windows that provide eyes on the street.

RESIDENTIAL NEIGHBORHOOD

The residential neighborhood place type is comprised of one- and two-story single family houses, duplexes, triplexes, and quadplexes. The buildings are set back from tree-lined streets with front yards that may be enclosed by low front yard fences, walls, or hedges. New buildings are scaled and designed to be compatible with adjacent houses.
The following image shows an illustrated version of the place type diagram for the Covina focus area. The photos help describe the differences in character and scale between the place type designations.
MAIN STREET COMMERCIAL

Main street commercial is intended to provide a mix of multifamily housing, office, and retail uses. The place type is intended to create a compact, mixed-use, walkable area near major transit stops, such as the Metrolink Station (Covina and Baldwin Park) and/or bus stops.

Buildings are generally “block form” and up to 5-stories tall. Front façades are built to the front property line with at-grade entrances to generate an active public realm.

Sidewalks are wide and planted with street trees in grates or small planters, and there is curbside parking for customers and visitors. Benches, trash receptacles, and other street furnishings are provided for the comfort of shoppers, visitors, and commuters.

Off-street parking is located behind buildings or below grade. Park-once, shared parking, or other parking management strategies are critical to the success of main street commercial environments, allowing visitors to leave their car and pursue multiple activities on foot.
MAIN STREET COMMERCIAL

SETBACKS
1. Front

BUILDINGS TYPES

<table>
<thead>
<tr>
<th>BUILDINGS TYPES</th>
<th>RECOMMENDED MAX. HEIGHT</th>
<th>RECOMMENDED MAX. BUILDING WIDTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Mixed Use Building</td>
<td>5</td>
<td>135 ft.</td>
</tr>
<tr>
<td>2. Large Apartment Building</td>
<td>5</td>
<td>135 ft.</td>
</tr>
<tr>
<td>3. Courtyard Building</td>
<td>5</td>
<td>135 ft.</td>
</tr>
<tr>
<td>4. Rowhouse</td>
<td>5</td>
<td>135 ft.</td>
</tr>
<tr>
<td>5. Small Apartment Building</td>
<td>not recommended</td>
<td></td>
</tr>
<tr>
<td>6. Triplex and Quadplex</td>
<td>not recommended</td>
<td></td>
</tr>
<tr>
<td>7. Single Family House and Duplex</td>
<td>not recommended</td>
<td></td>
</tr>
<tr>
<td>8. Second Unit</td>
<td>not recommended</td>
<td></td>
</tr>
<tr>
<td>9. Industrial Building</td>
<td>not recommended</td>
<td></td>
</tr>
</tbody>
</table>

FRONTPAGE TYPES
1. Shopfront
2. Arcade
3. Gallery
3. Stoop
4. Porch
5. Front Yard (Common or Fenced)

PARKING
1. Placement

USES
1. Office Commercial
2. Retail Commercial
3. Light Industrial
4. Residential

RESIDENTIAL DENSITY
Mid to high
CORRIDOR COMMERCIAL

Corridor commercial areas are intended to provide a mix of retail, office and in some cases multifamily residential uses along major streets. The type is intended to be used when main street commercial is impractical due to constraints on parking or vehicle volumes on adjacent streets.

Buildings are generally “block form” and up to 3-stories tall. Buildings are located adjacent to the sidewalk with ground floor shopfronts facing the street or facing side parking lots.

Sidewalks are as wide as possible and planted with street trees in grates or small planters, and curbside parking is provided whenever possible. Benches, trash receptacles, and other street furnishings may be provided.

Off-street parking is located behind or beside buildings and screened from the sidewalk by low walls or hedges, as necessary.
<table>
<thead>
<tr>
<th>SETBACKS</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Front</td>
<td>Urban (no or small front yard)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BUILDINGS TYPES</th>
<th>RECOMMENDED MAX. STORIES</th>
<th>RECOMMENDED MAX. BUILDING WIDTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Mixed Use Building</td>
<td>3</td>
<td>135 ft.</td>
</tr>
<tr>
<td>2. Large Apartment Building</td>
<td>3</td>
<td>135 ft.</td>
</tr>
<tr>
<td>3. Courtyard Building</td>
<td>3</td>
<td>135 ft.</td>
</tr>
<tr>
<td>4. Rowhouse</td>
<td>3</td>
<td>135 ft.</td>
</tr>
<tr>
<td>5. Small Apartment Building</td>
<td>not recommended</td>
<td></td>
</tr>
<tr>
<td>6. Triplex and Quadplex</td>
<td>not recommended</td>
<td></td>
</tr>
<tr>
<td>7. Single Family House and Duplex</td>
<td>not recommended</td>
<td></td>
</tr>
<tr>
<td>8. Second Unit</td>
<td>not recommended</td>
<td></td>
</tr>
<tr>
<td>9. Industrial Building</td>
<td>not recommended</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FRONTAGE TYPES</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Shopfront</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>2. Arcade</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>3. Gallery</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>3. Stoop</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>4. Porch</td>
<td>not recommended</td>
<td></td>
</tr>
<tr>
<td>5. Front Yard (Common or Fenced)</td>
<td>not recommended</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PARKING</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Placement</td>
<td>Behind building or subterranean</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>USES</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Office Commercial</td>
<td>All floors</td>
<td></td>
</tr>
<tr>
<td>2. Retail Commercial</td>
<td>All floors</td>
<td></td>
</tr>
<tr>
<td>3. Light Industrial</td>
<td>not recommended</td>
<td></td>
</tr>
<tr>
<td>4. Residential</td>
<td>Upper floors only</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RESIDENTIAL DENSITY</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mid</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LIFE STYLE CENTER COMMERCIAL

Lifestyle center commercial areas are intended to mix the corridor commercial pattern with larger retail tenants, usually on deep lots. The corridor-fronting buildings are very similar to the corridor commercial pattern, but the buildings are spaced more widely to allow passing motorists to see the retail stores behind.

Buildings are generally “block form” and up to 2-stories tall. Commercial uses - and in some cases residential uses - may be provided on the second floor.

The streetscape is intended to be similar to corridor commercial. Large off-street parking areas are screened with low walls and hedges. The major drive aisle(s) leading from the corridor to the “anchor tenants” have tree rows and a sidewalk on at least one side of the drive to accommodate pedestrian movement.

A lifestyle commercial building.

Parking is screened by a low wall and trellis.

Small buildings are located close to the sidewalk, screening the large parking lot behind. Street.
<table>
<thead>
<tr>
<th>BUILDINGS TYPES</th>
<th>RECOMMENDED MAX. STORIES</th>
<th>RECOMMENDED MAX. BUILDING WIDTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban (no or small front yard)</td>
<td>4</td>
<td>140 ft.</td>
</tr>
<tr>
<td>1. Mixed Use Building</td>
<td>not recommended</td>
<td></td>
</tr>
<tr>
<td>2. Large Apartment Building</td>
<td>not recommended</td>
<td></td>
</tr>
<tr>
<td>3. Courtyard Building</td>
<td>4</td>
<td>140 ft.</td>
</tr>
<tr>
<td>4. Rowhouse</td>
<td>not recommended</td>
<td></td>
</tr>
<tr>
<td>5. Small Apartment Building</td>
<td>not recommended</td>
<td></td>
</tr>
<tr>
<td>6. Triplex and Quadplex</td>
<td>not recommended</td>
<td></td>
</tr>
<tr>
<td>7. Single Family House and Duplex</td>
<td>not recommended</td>
<td></td>
</tr>
<tr>
<td>8. Second Unit</td>
<td>not recommended</td>
<td></td>
</tr>
<tr>
<td>9. Industrial Building</td>
<td>not recommended</td>
<td></td>
</tr>
<tr>
<td>FRONTAGE TYPES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Shopfront</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>2. Arcade</td>
<td>not recommended</td>
<td></td>
</tr>
<tr>
<td>3. Gallery</td>
<td>not recommended</td>
<td></td>
</tr>
<tr>
<td>3. Stoop</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>4. Porch</td>
<td>not recommended</td>
<td></td>
</tr>
<tr>
<td>5. Front Yard (Common or Fenced)</td>
<td>not recommended</td>
<td></td>
</tr>
<tr>
<td>PARKING</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Placement</td>
<td>Behind building or subterranean</td>
<td></td>
</tr>
<tr>
<td>USES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Office Commercial</td>
<td>All floors</td>
<td></td>
</tr>
<tr>
<td>2. Retail Commercial</td>
<td>Ground floor only</td>
<td></td>
</tr>
<tr>
<td>3. Light Industrial</td>
<td>not recommended</td>
<td></td>
</tr>
<tr>
<td>4. Residential</td>
<td>not recommended</td>
<td></td>
</tr>
<tr>
<td>RESIDENTIAL DENSITY</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mid to high</td>
<td></td>
</tr>
</tbody>
</table>
EMPLOYMENT COMMERCIAL

The employment commercial place type is intended to accommodate a range of service retail, office, R&D, and light industrial uses in buildings that face the street. This place type is not intended to include residential uses.

Buildings are "block form" and up to 3-stories tall. Front façades are built to the front property line with at-grade entrances to generate an active public realm. In some cases, windows may also face side parking.

Sidewalks are as wide as practical and planted with street trees in grates or small planters, and curbside parking is provided whenever possible. On very deep lots with little potential for subdivision, this place type may be organized with internal streets or drives. These streets should have tree rows and a sidewalk on at least one side of the drive to accommodate pedestrian movement. Individual buildings and tenants have their "address" on those private ways rather than public streets.

Off-street parking is located behind or beside buildings, and is screened from the sidewalk by low walls or hedges. Loading operations and service entrances are at the rear and accessed by alleys or through rear parking areas.
<table>
<thead>
<tr>
<th>EMPLOYMENT COMMERCIAL</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SETBACKS</td>
<td></td>
</tr>
<tr>
<td>1. Front Urban (no or small front yard)</td>
<td></td>
</tr>
<tr>
<td>BUILDINGS TYPES</td>
<td>RECOMMENDED MAX. STORIES</td>
</tr>
<tr>
<td>1. Mixed Use Building</td>
<td>3</td>
</tr>
<tr>
<td>2. Large Apartment Building</td>
<td>not recommended</td>
</tr>
<tr>
<td>3. Courtyard Building</td>
<td>not recommended</td>
</tr>
<tr>
<td>4. Rowhouse</td>
<td>not recommended</td>
</tr>
<tr>
<td>5. Small Apartment Building</td>
<td>not recommended</td>
</tr>
<tr>
<td>6. Triplex and Quadplex</td>
<td>not recommended</td>
</tr>
<tr>
<td>7. Single Family House and Duplex</td>
<td>not recommended</td>
</tr>
<tr>
<td>8. Second Unit</td>
<td>not recommended</td>
</tr>
<tr>
<td>9. Industrial Building</td>
<td>3</td>
</tr>
<tr>
<td>FRONTAGE TYPES</td>
<td></td>
</tr>
<tr>
<td>1. Shopfront</td>
<td>yes</td>
</tr>
<tr>
<td>2. Arcade</td>
<td>not recommended</td>
</tr>
<tr>
<td>3. Gallery</td>
<td>not recommended</td>
</tr>
<tr>
<td>3. Stoop</td>
<td>yes</td>
</tr>
<tr>
<td>4. Porch</td>
<td>not recommended</td>
</tr>
<tr>
<td>5. Front Yard (Common or Fenced)</td>
<td>not recommended</td>
</tr>
<tr>
<td>PARKING</td>
<td></td>
</tr>
<tr>
<td>1. Placement</td>
<td>Behind building or subterranean</td>
</tr>
<tr>
<td>USES</td>
<td></td>
</tr>
<tr>
<td>1. Office Commercial</td>
<td>All floors</td>
</tr>
<tr>
<td>2. Retail Commercial</td>
<td>All floors</td>
</tr>
<tr>
<td>3. Light Industrial</td>
<td>Ground floor in one-story building</td>
</tr>
<tr>
<td>4. Residential</td>
<td>not recommended</td>
</tr>
<tr>
<td>RESIDENTIAL DENSITY</td>
<td>n/a</td>
</tr>
</tbody>
</table>
NEIGHBORHOOD CENTER

The neighborhood center place type is intended to provide a smooth transition between main street commercial and single family homes.

Buildings are of "residential scale" and usually "house-form." Buildings face the tree-lined streets and are set back from the street behind landscaped front yards. The set back may be shallow with front doors to welcome visitors and windows that provide eyes on the street. At some street corners, small neighborhood-serving commercial businesses may be accommodated in shopfronts.

The streetscape is similar to a residential neighborhood with large street trees, comfortable sidewalks, and curbside parking for visitors.

Off-street parking is generally provided in private garages and parking lots at the rear of each lot. Visitor and/or customer parking needs are generally met by on-street parking, or “park-once” facilities in an adjoining main street area.
<table>
<thead>
<tr>
<th>SETBACKS</th>
<th>NEIGHBORHOOD CENTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Front</td>
<td>Urban (no or small to medium front yard)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BUILDINGS TYPES</th>
<th>RECOMMENDED MAX. STORIES</th>
<th>RECOMMENDED MAX. BUILDING WIDTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Mixed Use Building</td>
<td>not recommended</td>
<td></td>
</tr>
<tr>
<td>2. Large Apartment Building</td>
<td>3</td>
<td>110 ft.</td>
</tr>
<tr>
<td>3. Courtyard Building</td>
<td>3</td>
<td>110 ft.</td>
</tr>
<tr>
<td>4. Rowhouse</td>
<td>3</td>
<td>90 ft.</td>
</tr>
<tr>
<td>5. Small Apartment Building</td>
<td>2</td>
<td>90 ft.</td>
</tr>
<tr>
<td>6. Triplex and Quadplex</td>
<td>2</td>
<td>60 ft.</td>
</tr>
<tr>
<td>7. Single Family House and Duplex</td>
<td>2</td>
<td>40 ft.</td>
</tr>
<tr>
<td>8. Second Unit</td>
<td>not recommended</td>
<td></td>
</tr>
<tr>
<td>9. Industrial Building</td>
<td>not recommended</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FRONTAGE TYPES</th>
<th>Uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Shopfront</td>
<td>not recommended</td>
</tr>
<tr>
<td>2. Arcade</td>
<td>not recommended</td>
</tr>
<tr>
<td>3. Gallery</td>
<td>not recommended</td>
</tr>
<tr>
<td>4. Porch</td>
<td>yes</td>
</tr>
<tr>
<td>5. Front Yard (Common or Fenced)</td>
<td>yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PARKING</th>
<th>uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Placement</td>
<td>Behind building or subterranean</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>USES</th>
<th>uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Office Commercial</td>
<td>not recommended</td>
</tr>
<tr>
<td>2. Retail Commercial</td>
<td>Ground floor corner market or similar</td>
</tr>
<tr>
<td>3. Light Industrial</td>
<td>not recommended</td>
</tr>
<tr>
<td>4. Residential</td>
<td>All floors</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RESIDENTIAL DENSITY</th>
<th>Uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mid</td>
<td></td>
</tr>
</tbody>
</table>
RESIDENTIAL NEIGHBORHOOD

The residential neighborhood place type is intended to be completely residential. It is comprised of one- and two-story single family homes, and duplexes, triplexes, and quadplexes that adopt the scale and character of a large house or attached smaller houses.

Buildings are set back from the street behind front yards that may be enclosed by low front yard fences, walls, or hedges. New buildings are scaled and designed to be compatible with adjacent homes.

The streetscape has large street trees, comfortable sidewalks, and curbside parking for visitors. Curb cuts are as narrow as possible and provided only when alley is not present or cannot be practically added.

Off-street parking is provided in private garages and parking areas at the rear of each lot. Visitor parking needs are met by on-street parking.
RESIDENTIAL NEIGHBORHOOD

SETBACKS
1. Front

BUILDINGS TYPES
1. Mixed Use Building
2. Large Apartment Building
3. Courtyard Building
4. Rowhouse
5. Small Apartment Building
6. Triplex and Quadplex
7. Single Family House and Duplex
8. Second Unit
9. Industrial Building

FRONTAGE TYPES
1. Shopfront
2. Arcade
3. Gallery
4. Stoop
5. Porch
6. Front Yard (Common or Fenced)

PARKING
1. Placement

USES
1. Office Commercial
2. Retail Commercial
3. Light Industrial
4. Residential

RESIDENTIAL DENSITY
Low
BUILDING TYPES

A defining characteristic of all pedestrian-oriented and transit-oriented urban places is that their public spaces - the streets, plazas, parks and other common community spaces - are all lined by, defined by and make comfortable and secure by buildings that face and embrace the street. Such patterns integrate walking into the daily lives of their residents, employees and customers, which is a vital precondition to developing effective and efficient transit services.

The following section describes nine different building types that are specifically configured to support pedestrian-oriented urban environments and are recommended and calibrated for the Ramona-Badillo Corridor. These types are the “building blocks” for the place types described on the previous pages. These building types orient their main entries and abundant windows toward the street. Parking and other service uses are oriented away from the street, and driveways allowing cars into the pedestrian environment are minimized. Pro-forma analysis has been conducted on four of these building types, and the analysis is included in Appendix B.

These pedestrian-oriented building types work in concert with strategies to improve the public realm and streets for people. As the streets along the Ramona-Badillo Corridor are improved to provide comfortable sidewalks, convenient on-street parking, and a range of useful destinations within a comfortable walking distance of most residences and businesses, the share of non-motorized trips will increase.
Mixed Use Building. A one-, two- or three-story building designed for occupancy by retail, service, or office, uses on the ground floor, with upper floors configured for service, office, and/or residential uses. Parking is at the rear or subterranean.

Large Apartment Building. A building surrounded on all four sides by setbacks and designed for occupancy by residential uses on all floors. The building has a central lobby that provides access to individual units via corridors. Ground floor dwellings facing the street may additionally take direct access via stoops or semi-private dooryards. Parking is at the rear or subterranean.

Courtyard Building. A group of attached dwelling units arranged to share one or more common courtyards with pedestrian access to the building’s entrances from the courtyard and/or the street. The courtyard is intended to be a semi-public outdoor room that is visible from the street. Parking is at the rear or subterranean.
Rowhouse. A building comprised of three or more attached dwelling units arranged side by side. The ground floor is generally raised above grade in order to provide privacy for ground floor rooms. The building faces the street with individual dwelling entrances. A private garage is located at the rear, separated from the building by a rear yard. A “tuck-under rowhouse” is a variation without a rear yard and the garage attached to the dwelling.

Small Apartment Building. A building with the appearance of a large house, containing up to eight dwelling units surrounded on all four sides by setbacks. The building has a central lobby that provides access to individual units. On-site open space is provided by a rear yard that serves all the dwellings.

Triplex and Quadplex. A building with three or four dwellings surrounded on all four sides by setbacks (front yard, side yard, rear yard). On-site open space is provided through a rear yard that serves all the dwellings or through individual yards for each dwelling.
Single Family House and Duplex. Single family houses and duplexes are buildings that are surrounded on all four sides by setbacks. Single family houses contain only one unit, while duplexes may contain no more than two dwelling units. On-site private open space is provided through a rear yard. Garages, either attached or detached, and second units may be located on the lot.

Second Unit. A freestanding building that shares a lot with a single family house that is smaller than the main house and is located at the rear of the lot.

Industrial Building. A building designed for occupancy primarily by manufacturing, workshop, and warehouse uses. The industrial building type also accommodates the large loading and/or staging area requirements that manufacturing and warehouse uses might need, but requires these support areas, including parking, to be located either to the side or the rear of the building in order to ensure that buildings front the sidewalk and street.
BUILDING FRONTAGE TYPES

This section describes six building frontage types that are appropriate for the Ramona-Badillo Corridor. These frontage types shape and define the variety of streetscapes along the corridor and adjacent streets. The frontages are intended to support active and continuous pedestrian-oriented environments and provide a physical transition between the public realm and the public and private buildings.

The building frontage types should be used in conjunction with the place types and building types described on the preceding pages. Specifically, the place type tables provide recommendations on the building frontages appropriate in a type.

SHOPFRONT. The ground floor of a facade, set at or very near and directly accessed from the sidewalk, provided with a prominent entry door and large display windows in a storefront assembly. Shopfront windows transparent - any tinting is less than 15% and no mirroring is every provided - and are generally set on a solid bulkhead out to two feet tall, or may extend to the floor. Optional elements include awnings, cantilevered shed roof or canopy, signage, lighting, and cornices.

ARCADE. The ground floor of a facade, with shopfronts enclosed by an attached colonnade that supports the upper stories of the building. The upper floors extend over the sidewalk and are flush with the face of the arcade, between two and four feet behind the curb of the street. Arcades are ideal for warm climates as they shelter the pedestrian while shading the storefront glass and preventing glare that might obscure views of merchandise. The interior space of the arcade is between 8 and 16 feet in depth with deeper arcades able to accommodate sidewalk dining.

GALLERY. The ground floor of a facade, with shopfronts enclosed by an attached, roofed colonnade. The roof of the gallery may or may not provide a balcony for the second floor, and if it does that balcony may also be roofed, forming a two-story gallery. The horizontal dimensions and retailing benefits of a gallery are similar to those of an arcade, but it is supported by posts rather than columns.
Stoop. Stoops are exterior stairs with landings - which may or may not be roofed - providing access to slightly elevated ground floors buildings located near or at their front property lines. The ground floor of the building is raised to provide privacy for the rooms facing the public street despite the shallow setback depth. This frontage type is ideal for ground floor housing in neighborhood centers where a more intense, active urban environment is envisioned, particularly near main streets and transit stations and stops.

Porch. An open or enclosed gallery or room attached to the face of a residence - which may be attached to or detached from others - to provide an intermediate semi-private space between from the sidewalk and a ground floor residence. Porches are provided within front yards, and may generally project into required front yard setback areas since they are an integral part of that semi-public/semi-private transition environment that allows residents to comfortably interact with visitors, neighbors, and passers by on their own terms.

Front Yard (Common Yard or Fenced). The area between the building facade and the property line is the front yard. Front yards may be visually continuous with adjacent yards, supporting a common landscape, or enclosed by a low fence or wall. On sloping sites, front yards may be raised above the level of the adjacent sidewalk and supported by a low retaining wall at the property line with steps providing access between the sidewalk and the yard. Porches, stoops, balconies, and awnings may encroach into front yards.
FRONTAGE REPAIR STRATEGIES

Creating a pedestrian-friendly, transit-oriented environment requires that streets, sidewalks, and parking lots be comfortably and safely navigated by pedestrians of all ages. Many stretches of the Ramona-Badillo Corridor are fronted by large parking lots, blank sound walls, and windowless buildings. Many sections of the corridor also lack street trees. These are streetscape characteristics that discourage pedestrians and hinder transit use.

This section provides a step-by-step process to improve streetscapes for pedestrians. Many of the steps can be accomplished without new expenditures, such as when a street is being resurfaced, or without new development.

Strategies for transforming auto-oriented streets into pedestrian-friendly, multi-modal complete streets include following steps:
1. **Provide on-street parking**: Preserving or adding on-street parking is critical to creating a pedestrian-oriented environment. From a safety perspective, it creates a physical and psychological barrier between pedestrians and moving traffic, and from a commercial perspective, it provides parking right in front of stores, which makes it possible to have retail buildings face the street.

2. **Preserve/add street trees**: Like parked cars, street trees provide an important barrier between pedestrians and moving traffic. They also define the space of the street - even wide streets flanked by buildings of only one story - and provide shade, creating a more habitable environment, contributing a unique street identity, reducing cooling expenses for adjacent buildings, and increasing property values. In cases where the distance between the curb and the property line is too narrow to accommodate trees wells or continuous planters, trees can be introduced in planters located between parking spaces. This also reduces the visual width of the roadway without impeding traffic, which helps to slow traffic to speeds that are safer for pedestrian-oriented environments.

3. **Screen parked cars**: Parking lots along street frontages can be uninviting breaks in the streetscape that people must walk past. These gaps discourage walking. Low walls and/or hedges at the edge of the sidewalk - in combination with parking lot trees - define pedestrian space.

4. **Insert liner buildings**: Small retail buildings, which can be as shallow as 20 feet in depth and built at the property line along the edges of parking lots or the sides of “big box” buildings, are even better than landscaping as a means to encourage walking. Liner buildings create a more pedestrian-friendly frontage, while converting a dead frontage to a revenue producing use.

5. **Convert blank walls to street-friendly walls**: Blank, windowless, and door-less walls present a hostile face to pedestrians and contribute to streets and are or are perceived to be dangerous. Introducing doors and windows provides pedestrians access to these building from the sidewalk, while providing “eyes on the street.” New shopfronts have the potential to generate new revenue.

6. **Landscape blank sounds walls**: Like windowless buildings, blank sound walls present an uninviting face for passing pedestrians and cyclists. Introducing landscaping and/or public art on or next to these walls creates a more inviting experience for pedestrians and makes the property appear more valuable.

7. **Transform parking lot drive aisles to streets (or to look like streets)**: Large lots and “superblocks” are antithetical to pedestrian-oriented and transit-oriented placemaking. When it is not practical to subdivide such lots and/or blocks into walkable blocks, “virtual subdivision” may be accomplished by designing major private drive aisles as small streets, providing new “frontages” for buildings and businesses within such areas.
Introducing street trees, pedestrian-scaled streets lights, and crosswalks creates a more inviting and comfortable environment for pedestrians and transit users. Creating such walkable streets is key to creating a successful pedestrian environment.

Introducing multi-story mixed-use, residential, and office buildings places creates a more interesting walking environment and puts people near transit.
A one-way street designed to move vehicles quickly (left) is transformed into a two-way, multi-modal street (right). Fewer lanes (and, in this case, two-way traffic), street trees, striped crosswalks, and buildings located close to the sidewalk all help to slow cars down and consequently make a more inviting environment for pedestrians and cyclists.

A street-facing parking lot (left) is replaced with a small building that houses a coffee shop (right).

A building lacking street-facing entrances and windows (left) is opened up with street-facing storefront windows, awnings and a corner entry (right).
An existing surface parking lot (top) is transformed into a pedestrian-friendly street including sidewalks, street trees, street lights, and hedges that screen adjacent parking (bottom).
This chapter provides a list of specific implementation strategies that are necessary to enable the vision for the Ramona-Badillo Corridor to become a reality. The implementation strategies are recommended activities needed to implement the visions, guiding principles, and big ideas presented in the previous chapters. The corridor-level implementation actions grouped into "action types" such as land use and design, public realm, and transportation.

After the implementation actions table, the chapter includes a series of federal, state, regional, and local funding mechanisms available to support implementation of the activities outlined in previous chapters.

CORRIDOR-LEVEL IMPLEMENTATION

In the table that follows, each implementation action includes the following information:

Description: A description of the implementation action.

Timing: The relative timeframe for when the action will occur. All of the actions are considered “Short Term” (within the next 5 years) or “Long Term” (after 5 years). Timing can easily change based on evolving policy and the availability of funding.

Relative cost: This is the relative cost of one action compared to others. Please note that these cost estimates are qualitative and that no quantitative cost estimating was completed for the project. This information is based on the best professional judgment of the consultant team. The following are the three categories of Relative Cost:

- $: Low cost compared to other implementation actions. Examples include plans or studies or very minor physical improvements such as restriping a roadway or crosswalk.
- $$: Medium cost compared to other implementation actions. This includes small physical improvements such as adding a center median or a new, signalized crossing or intersection.
- $$$: High cost compared to other implementation actions. This includes expensive physical improvements such as adding new streets, moving curbs, or major renovations.

Responsibility: This identifies the public or private agency responsible for implementation.
<table>
<thead>
<tr>
<th>Corridor Actions</th>
<th>Implementation Action</th>
<th>Description</th>
<th>Timeframe</th>
<th>Relative Cost ($, $$, $$$)</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Streetscape</td>
<td>Provide sidewalks</td>
<td>As conditions permit, provide sidewalks along both sides of the Ramona-Badillo Corridor.</td>
<td>Short</td>
<td>$</td>
<td>Cities, private developers</td>
</tr>
<tr>
<td></td>
<td>On-street parking</td>
<td>Provide on-street parking along Ramona-Badillo Corridor, wherever possible, as a buffer for pedestrians and as a way to reduce the need for off-street parking.</td>
<td>Long</td>
<td>$</td>
<td>Cities</td>
</tr>
<tr>
<td></td>
<td>Install crosswalks</td>
<td>Where there are sidewalks, introduce signalized pedestrian crosswalks with pedestrian countdown timers across Ramona Boulevard and Badillo Street in order to create safe connections between neighborhoods and transit stops. Seek to provide crossings with a maximum of 600-foot intervals.</td>
<td>Short</td>
<td>$</td>
<td>Cities</td>
</tr>
<tr>
<td></td>
<td>High-visibility sidewalks</td>
<td>Add ladder striping or other high-visibility striping at key intersections and nodes along the Ramona-Boulevard corridor, including Peck Road, Maine Avenue, Azusa Avenue, Vincent Avenue, and Citrus Avenue.</td>
<td>Short</td>
<td>$</td>
<td>Cities</td>
</tr>
<tr>
<td></td>
<td>ADA compliance</td>
<td>Starting with key intersections and nodes along the Ramona-Boulevard corridor, especially in the focus areas, ensure that each intersection accommodates individuals with disabilities.</td>
<td>Short</td>
<td>$</td>
<td>Cities</td>
</tr>
<tr>
<td></td>
<td>Curb extensions or bulb outs</td>
<td>When feasible, add curb extensions or bulbouts to reduce crossing distance for pedestrians and narrow the roadway at major intersections or nodes.</td>
<td>Long</td>
<td>$$$</td>
<td>Cities</td>
</tr>
<tr>
<td>Transit</td>
<td>Add transit route</td>
<td>Work with Metro to provide new transit service from the El Monte Station to the Metrolink Station in Covina along Ramona Boulevard and Badillo Street.</td>
<td>Short</td>
<td>$$$</td>
<td>Metro, Cities</td>
</tr>
<tr>
<td></td>
<td>Coordinate transit service</td>
<td>Work with Metro, Foothill Transit, Baldwin Park Shuttle, West Covina Transit, El Monte Transit, Rosemead Transit, and Montebello Transit to coordinated transit service by providing integrated maps and documents and service schedules.</td>
<td>Short</td>
<td>$</td>
<td>Transit agencies</td>
</tr>
<tr>
<td></td>
<td>Bus stops</td>
<td>When service is added to Badillo Street, add high-quality bus stops with benches and shading between Baldwin Park and Citrus Avenue.</td>
<td>Short</td>
<td>$</td>
<td>Metro, Cities</td>
</tr>
<tr>
<td></td>
<td>Opportunistic new bus pull-outs or bus bays</td>
<td>Work with private property owners to introduce new bus bays or pull outs during redevelopment of large parcels.</td>
<td>Long</td>
<td>$$$</td>
<td>Cities, private developers</td>
</tr>
<tr>
<td>Bus Rapid Transit</td>
<td>Queue jumping lanes</td>
<td>As conditions permit, allow transit vehicles to bypass congestion at an intersection by converting the right-turn lane into a lane which allows transit vehicles to travel through an intersection ahead of other stopped traffic.</td>
<td>Mid</td>
<td>$$$</td>
<td>Metro, Cities</td>
</tr>
<tr>
<td></td>
<td>Bus stops</td>
<td>If BRT is implemented within the corridor, upgrade bus stops to accommodate real time informational signage, larger shelters for additional riders, and additional benches.</td>
<td>Long</td>
<td>$$$</td>
<td>Metro, Cities</td>
</tr>
<tr>
<td></td>
<td>Signal priority</td>
<td>When updating or replacing traffic signals in the Ramona-Badillo Corridor, coordinate with Metro to determine whether transit signal priority equipment should be installed and what equipment should be purchased.</td>
<td>Long</td>
<td>$</td>
<td>Metro, Cities</td>
</tr>
</tbody>
</table>
TABLE 4: RAMONA-BADILLO CORRIDOR IMPLEMENTATION TABLE

<table>
<thead>
<tr>
<th>Corridor Actions</th>
<th>Bicycle Infrastructure</th>
<th>Class II bike lanes</th>
<th>Class III bike lanes</th>
<th>Gap closure</th>
<th>Bike sharing</th>
<th>Bike parking</th>
<th>Focus area plans</th>
<th>Policy to target funding</th>
<th>Affordable housing</th>
<th>TOD-supportive development incentives</th>
<th>Use site design strategies and code framework</th>
<th>Implement existing land use and specific plans</th>
<th>Off-street parking</th>
<th>Plant street trees</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stripe bike lanes from North Orange Avenue to Azusa Boulevard and Grand Avenue to Covina City Limits.</td>
<td>Short $$</td>
<td>Covina, West Covina</td>
<td>Short $</td>
<td>Class III bike lanes</td>
<td>Add Class III facilities along Ramona Boulevard from the El Monte Station to Durfee Avenue, and along San Bernardino Road from Ramona Boulevard to North Lank Ellen Avenue.</td>
<td>Short</td>
<td>Cities</td>
<td>Short $</td>
<td>Gap closure</td>
<td>Close gaps in the Class II lane network, and make connections to existing facilities or major destinations along the corridor. Two of these routes are in El Monte, south of the El Monte Train Station while the third is also south of the corridor in Baldwin Park.</td>
<td>Short $</td>
<td>El Monte, Baldwin Park</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Class III bike lanes</td>
<td>Short $</td>
<td>Cities</td>
<td>Short $</td>
<td>Bike sharing</td>
<td>Evaluate bike sharing at the El Monte Station with Metro and other agencies to investigate the suitability for a bike share facility at this location.</td>
<td>Short $</td>
<td>El Monte, Metro</td>
<td>Bike parking</td>
<td>Provide bike parking in non-residential, mixed use, and multifamily projects, and at key destinations along the corridor.</td>
<td>Short $</td>
<td>Cities, private developers</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bike parking</td>
<td>Short $</td>
<td>Cities</td>
<td>Short $</td>
<td>Focus area plans</td>
<td>Take the necessary steps to study and then implement the focus area recommendations described in Chapter 7.</td>
<td>Short $$$</td>
<td>Cities</td>
<td>Policy to target funding</td>
<td>Each city should consider creating a policy to focus existing programs and resources into the identified focus areas.</td>
<td>Short $</td>
<td>El Monte, Covina, Baldwin Park</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Affordable housing</td>
<td>Short $$$</td>
<td>El Monte, Covina, Baldwin Park</td>
<td>Short $</td>
<td>Affordable housing</td>
<td>Target affordable housing funds for projects within the focus areas.</td>
<td>Short $</td>
<td>Cities</td>
<td>Affordable housing</td>
<td>Target affordable housing funds for projects within the focus areas.</td>
<td>Short $$$</td>
<td>El Monte, Covina, Baldwin Park</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOD-supportive development incentives</td>
<td>Short $</td>
<td>Cities</td>
<td>Short $</td>
<td>TOD-supportive development incentives</td>
<td>Develop a package of incentives for new developments with transit-supportive uses and designs, including projects with a mix of uses, lower parking needs, shared parking, and building design and orientation.</td>
<td>Short $</td>
<td>Cities</td>
<td>TOD-supportive development incentives</td>
<td>Develop a package of incentives for new developments with transit-supportive uses and designs, including projects with a mix of uses, lower parking needs, shared parking, and building design and orientation.</td>
<td>Short $</td>
<td>Cities</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Use site design strategies and code framework</td>
<td>Short $</td>
<td>Cities</td>
<td>Short $</td>
<td>Use site design strategies and code framework</td>
<td>The cities should use the site design strategies and code framework for all new development within the corridor.</td>
<td>Short $</td>
<td>Cities</td>
<td>Use site design strategies and code framework</td>
<td>The cities should use the site design strategies and code framework for all new development within the corridor.</td>
<td>Short $</td>
<td>Cities</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Implement existing land use and specific plans</td>
<td>Short $$$</td>
<td>Cities</td>
<td>Short $</td>
<td>Implement existing land use and specific plans</td>
<td>Building on the existing land use and specific plans along the corridor.</td>
<td>Short $$$</td>
<td>Cities</td>
<td>Implement existing land use and specific plans</td>
<td>Building on the existing land use and specific plans along the corridor.</td>
<td>Short $$$</td>
<td>Cities, private developers</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Off-street parking</td>
<td>Short $</td>
<td>Cities</td>
<td>Short $</td>
<td>Off-street parking</td>
<td>Revise parking standards in the focus areas and at major intersections to reduce parking requirements, allow and facilitate shared parking, and provide public parking where feasible. The guidelines should also facilitate better designed parking, which includes introducing trees, landscaping, and other aesthetic improvements in parking lots.</td>
<td>Short $</td>
<td>Cities</td>
<td>Off-street parking</td>
<td>Revise parking standards in the focus areas and at major intersections to reduce parking requirements, allow and facilitate shared parking, and provide public parking where feasible. The guidelines should also facilitate better designed parking, which includes introducing trees, landscaping, and other aesthetic improvements in parking lots.</td>
<td>Short $</td>
<td>Cities, private developers</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plant street trees</td>
<td>Short $</td>
<td>Cities</td>
<td>Short $</td>
<td>Plant street trees</td>
<td>Along with the provision of sidewalks, crosswalks, and other pedestrian amenities, street trees should be planted to buffer pedestrians from traffic, increase street and sidewalk shading, and improve the visual character of the corridor.</td>
<td>Short $</td>
<td>Cities</td>
<td>Plant street trees</td>
<td>Along with the provision of sidewalks, crosswalks, and other pedestrian amenities, street trees should be planted to buffer pedestrians from traffic, increase street and sidewalk shading, and improve the visual character of the corridor.</td>
<td>Short $</td>
<td>Cities, private developers</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FUNDING SOURCES

There are a variety of federal, state, regional/county, and local funding mechanisms available to support implementation of the activities outlined in previous chapters. Grant programs from public agencies regularly change or expire over time and therefore this chapter does not provide significant detail on individual grant programs. However, further detail on these programs can be gathered from a variety of sources (in most cases, the specific public agency or organization which offers the funding). The relevant grants and funding opportunities include the following:

FEDERAL

Department of Transportation (DOT): The Federal Highways Administration (FHWA) and the Federal Transit Administration (FTA) administer a range of grant programs that could be instrumental sources of funding for the Envisioning the Mid-Valley Transportation Corridor Plan. Current relevant funding activities include:

- FTA Small Starts and New Starts (transit);
- FTA Bus Livability Initiative (transit, bus facilities, intermodal transfers);
- FTA Discretionary Bus and Bus Facilities: State of Good Repair (transit, bus facilities, intermodal transfers);
- FHWA Transportation, Community, and System Preservation (planning, transit, bus facilities, pedestrian and bicycle facilities); and
- Transportation Improvements Generating Economic Recovery (TIGER) (large-scale transit infrastructure improvements).

Department of Housing and Urban Development (HUD): The federal Partnership for Sustainable Communities is currently administered by the HUD Office of Sustainable Communities. This Office may continue to function as a clearinghouse for grant opportunities from HUD, DOT, and the Environmental Protection Agency. Additionally, a range of HUD grants will be available for affordable housing production and preservation. Current relevant funding activities include:

- Building Neighborhood Capacity Program Training and Technical Assistance (land use);
- Capacity Building for Community Development and Affordable Housing (affordable housing); and
- Affordable Housing Finance: Project-Based Section 8, Section 202 (elderly housing), Section 811 (disability housing).

Environmental Protection Agency (EPA): While EPA does not generally provide significant grants for infrastructure improvements, its Brownfields and Smart Growth Implementation Assistance Programs may offer grant opportunities for certain eligible projects. Current activities include:

- Brownfields Assessment Grant Program (land use);
- Brownfield Economic Development Initiative (land use planning, job creation);
- Brownfields and Lands Revitalization (land use planning and cleanup);
- Smart Growth Technical Assistance (planning); and
- Building Blocks for Sustainable Communities (planning).

Department of the Treasury: The Department of the Treasury administers a number of tax credit programs that can be used for specific development-related activities. These, however,
are typically regulated and allocated by other local agencies or organizations. Current relevant funding activities include:

- Low Income Housing Tax Credits (California Housing Finance Agency); and
- New Markets Tax Credits (CDFIs: Enterprise Community Partners and Low Income Investment Fund).

Other Agencies: Recently the Center for Disease Control (CDC), the United States Department of Agriculture (USDA), the Economic Development Administration (EDA), and the Small Business Administration have offered programs or grants that address specific issues related to sustainability. Current relevant funding activities include:

- USDA Healthy Food Financing Initiative;
- EDA Planning and Local Technical Assistance Programs for Innovation-Based Economic Development Efforts (job creation); and
- Small Business Innovation Research Program (job creation).

For further information and an updated list of federal grant opportunities, please consult with regional offices for the above agencies or visit http://www.reconnectingamerica.org/resource-center/federal-grant-opportunities/.

STATE OF CALIFORNIA

Department of Transportation (CalTrans): CalTrans administers a number of planning and transportation infrastructure programs, which are typically coordinated with the Southern California Association of Governments (SCAG), or Metro, through the Long Range Transportation Plan. There are several additional sources of funding which can be accessed directly by cities that can be used to implement bicycle and pedestrian measures including:

- Bicycle Transportation Account (funding for new Class II and Class III bicycle facilities)
- Safe Routes to School (funding for crosswalks and bicycle facilities adjacent on routes to schools)

Housing and Community Development (HCD): HCD administers a number of programs supporting land use planning, transit-oriented development, and affordable housing preservation and production. Many of these programs have been funded by propositions or other legislation with an expiring time frame, but similar programs may exist in the future. Current relevant funding activities include:

- Infill Infrastructure Grant Program; and
- Predevelopment Loan Program.

Strategic Growth Council: Created by Senate Bill 732 (SB 732), the Strategic Growth Council administers several infrastructure and planning grants funded through Proposition 84 bonds. While the majority of the bond allocation has been committed to projects, there may be other funding sources administered by the Strategic Growth Council in the future. Current relevant funding activities include the Proposition 84 grant program.

REGIONAL

The South Coast Air Quality Management District (SCAQMD): SCAQMD administers a variety of grant programs that could be used to implement recommendations within the corridor. One program is described below.
The Mobile Source Reduction Committee (MSRC) is an effort by the SCAQMD to address transportation emissions through a variety of efforts. Previous projects funded by the MSRC include: bike stations, bike racks on buses, and charging stations for electric vehicles.

Funding from the MSRC could be used to fund some of the proposed bicycle and pedestrian improvements within the Ramona-Badillo Corridor, particularly those which reduce transportation emissions such as the proposed bicycle lanes and bicycle routes.

Los Angeles County Metropolitan Transportation Authority (Metro): Metro is the primary source of funding for transportation projects within Los Angeles County and combines funds from Federal, State, and local sources to construct and operate highway, transit, and active transportation facilities. Specific programs which Metro administers include:

- **Long Range Transportation Plan:** BRT will only be implemented in the Corridor through Metro and the initial phase of this effort will be to elevate the BRT from unfunded to funded status. Currently, BRT service is being evaluated in other higher priority corridors throughout LA County. The SGVCOG and the Cities along the Corridor should coordinate with Metro regularly to determine if conditions have changed within the Corridor to accelerate the schedule for BRT implementation. One catalyst could be new residential development or redevelopment along the Corridor to increase the potential service population.
- **Call for Projects:** Metro distributes funding for local projects through the regular Call for Projects Process. Potential improvements that could be funded by the Call for Projects include transit signal priority improvements that will facilitate transit travel throughout the Corridor.
- **Metro Bus Operations:** Metro is also the primary bus operator for LA County. As such, Metro regularly reviews bus routing and makes adjustments as necessary. The SGVCOG and the Cities along the Corridor should coordinate with Metro regularly to verify bus routing and determine whether it might be appropriate to revise Route 190 to create a more direct route through the Corridor.

LOCAL

Local funding mechanisms exist to fund planning, affordable housing, development, streetscape, pedestrian, bicycle, and other infrastructure improvements. The majority of city managed funding programs, such as the general fund, Community Development Block Grants (CDBG), and other sources, however, are highly constrained. Despite funding constraints, many of the recommendations are directly within the purview of the cities and can be implemented at little to no cost to the various public agencies. Some examples include:

- Several of the recommended streetscape improvements can be achieved through roadway restriping, including upgraded crosswalks and bicycle lanes (Class II). These improvements could potentially be implemented when roadways are repaved or resurfaced. Because of pavement wear, roadways are typically resurfaced on a regular schedule of approximately 5-10 years. After repaving, pavement markings are typically reapplied which would provide an opportunity to add bicycle lanes or high visibility crosswalks.
- Implementing new sidewalks might be best accomplished in conjunction with development. As sites redevelop, they should be required to either construct new sidewalks or replace existing sidewalks.
Coordinating bus service within the Ramona-Badillo Corridor already occurs through some of the agencies involved (Metro, Foothill Transit) and there is limited incremental effort to increase the level of coordination.

The remainder of the chapter describes a range of funding options available to the programs, plans, and projects included in the Envisioning the Mid-Valley Transportation Corridor Plan.

DISTRICT-BASED ASSESSMENT

The establishment of district-based funding and financing tools could be a good option to fund local improvements along the Ramona-Badillo Corridor. These tools provide an opportunity for local property owners and businesses to take ownership of implementing a focus area plan while reaping its benefits and potentially increasing the funding base by integrating the districts.

In particular, a business improvement district or property-based improvement district could enable local businesses or property owners to manage branding, marketing, signage, and functional and aesthetic improvements. A BID or PBID essentially creates a neighborhood-level economic development organization accountable to its members and with its own funding stream to improve business performance by addressing local needs. The BID could provide alternative funding for pedestrian improvements and also provide ongoing funds for their maintenance and operation. A BID or PBID is key to implementing an identity for the focus areas along the Ramona-Badillo Corridor that allows the area to compete for additional business and development by becoming "more than the sum of its parts." Examples of existing BIDs include the Covina Downtown Association and the Downtown El Monte Business Improvement District.

Other assessment districts or community facilities districts can provide a steady source of funding for costly infrastructure improvements needed to transform the area. These additional assessment districts will be necessary since a BID or PBID cannot finance major infrastructure projects. A CFD could be used to fund bicycle and pedestrian improvements as well as other needed infrastructure improvements. However, community facilities districts and other assessment districts can be difficult to form in a development infill setting like the focus areas along the Ramona-Badillo Corridor since two-thirds of property owners must approve. Passage may largely depend on interest by a handful of large property owners.

An infrastructure financing district or a landscape district could also be tools used to fund improvements. An infrastructure district (IFD) could be a desirable tool for implementing the improvements along the corridor since it captures tax increment rather than increasing the financial obligations of property owners. Alternatively, a landscape district is a fairly simple way to maintain landscaping and other similar amenities. It could be appropriate, for example, to establish landscape districts to maintain new and existing landscaping within the Ramona-Badillo Corridor.

DEVELOPER CONTRIBUTIONS

Private sector development can help to pay for new infrastructure, services, and benefits to be used by new development.

- **Development standards**: Development standards regulate aspects of a project such as land use, height, density, bulk, parking requirements, on-site circulation, on-site open space and other features.
- **Environmental impact mitigation**: The environmental review process requires the analysis of a project’s environmental impacts and the identification of measures to
reduce or eliminate impacts. As a requirement of approval, some developers of large projects may be required to undertake a number of mitigation measures.

- **Impact and In-Lieu Fees:** Development impact fees are a one-time charge for developers imposed on new development. These fees are charged to mitigate impacts resulting from the development activity, and cannot be used to pay for existing deficiencies. “In-lieu” fees are similar to impact fees, but are charges paid in-lieu of developers providing required on-site community benefits. Impact fees might be used to fund bicycle and pedestrian improvements, though they are more commonly used for roadway improvements and other public facilities.

- **Development Agreements:** Structured negotiations between cities and developers can be conducted to obtain desired improvements in exchange for development rights.

- **Reimbursement agreements:** An additional strategy to fund infrastructure is to require developers to build or fund the infrastructure directly. One potential application might include transportation infrastructure such as traffic signals, sidewalks, or bicycle lanes, particularly when those improvements are located along the frontage of a development or redevelopment project. Reimbursement agreements allow for initial development projects to receive some of the funds expended as later projects develop. For example, if one development project were to install a traffic signal at an intersection, subsequent development projects might then repay the original development a portion of the traffic signal cost over time. These reimbursement agreements would likely be most effective if there is a single large development coming forward which could bear the cost temporarily.